Biochemistry (Moscow)

, Volume 84, Issue 1, pp 40–46 | Cite as

Aim23p Interacts with the Yeast Mitochondrial Ribosomal Small Subunit

  • I. V. Chicherin
  • V. V. Zinina
  • S. A. Levitskiy
  • M. V. Serebryakova
  • P. A. KamenskiEmail author


Protein synthesis in mitochondria is generally organized in a bacterial-like manner but, at the same time, possesses several unique traits. Translation initiation in mitochondria is regulated by two protein factors, mtIF2 and mtIF3. Previously we demonstrated that Saccharomyces cerevisiae Aim23 protein is an ortholog of IF3 in budding yeast. However, the data on the interactions between Aim23p and other proteins are limited. Here, we demonstrated that Aim23p interacts with the yeast mitochondrial ribosomal small subunit both in vivo and in vitro using co-immunoprecipitation and density gradient sedimentation.


mitochondria translation ribosomes initiation factor Aim23p 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersson, S. G., Zomorodipour, A., Andersson, J. O., Sicheritz–Ponten, T., Alsmark, U. C., Podowski, R. M., Naslund, A. K., Eriksson, A. S., Winkler, H. H., and Kurland, C. G. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria, Nature, 396, 133–140.CrossRefGoogle Scholar
  2. 2.
    Foury, F., Roganti, T., Lecrenier, N., and Purnelle, B. (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae, FEBS Lett., 440, 325–331.CrossRefGoogle Scholar
  3. 3.
    Greber, B. J., and Ban, N. (2016) Structure and function of the mitochondrial ribosome, Annu. Rev. Biochem., 85, 103–132.CrossRefGoogle Scholar
  4. 4.
    Kuzmenko, A., Atkinson, G. C., Levitskii, S., Zenkin, N., Tenson, T., Hauryliuk, V., and Kamenski, P. (2014) Mitochondrial translation initiation machinery: conserva–tion and diversification, Biochimie, 100, 132–140.CrossRefGoogle Scholar
  5. 5.
    Koc, E. C., and Spremulli, L. L. (2002) Identification of mammalian mitochondrial translational initiation factor 3 and examination of its role in initiation complex formation with natural mRNAs, J. Biol. Chem., 277, 35541–35549.CrossRefGoogle Scholar
  6. 6.
    Atkinson, G. C., Kuzmenko, A., Kamenski, P., Vysokikh, M. Y., Lakunina, V., Tankov, S., Smirnova, E., Soosaar, A., Tenson, T., and Hauryliuk, V. (2012) Evolutionary and genetic analyses of mitochondrial translation initiation fac–tors identify the missing mitochondrial IF3 in S. cerevisiae, Nucleic Acids Res., 40, 6122–6134.CrossRefGoogle Scholar
  7. 7.
    Olsson, C. L., Graffe, M., Springer, M., and Hershey, J. W. (1996) Physiological effects of translation initiation factor IF3 and ribosomal protein L20 limitation in Escherichia coli, Mol. Gen. Genet., 250, 705–714.Google Scholar
  8. 8.
    Kuzmenko, A., Derbikova, K., Salvatori, R., Tankov, S., Atkinson, G. C., Tenson, T., Ott, M., Kamenski, P., and Hauryliuk, V. (2016) Aim–less translation: loss of Saccharomyces cerevisiae mitochondrial translation initia–tion factor mIF3/Aim23 leads to unbalanced protein syn–thesis, Sci. Rep., 6, 18749.CrossRefGoogle Scholar
  9. 9.
    Herrmann, J. M., Woellhaf, M. W., and Bonnefoy, N. (2013) Control of protein synthesis in yeast mitochondria: the concept of translational activators, Biochim. Biophys. Acta, 1833, 286–294.CrossRefGoogle Scholar
  10. 10.
    Islas–Osuna, M. A., Ellis, T. P., Marnell, L. L., Mittelmeier, T. M., and Dieckmann, C. L. (2002) Cbp1 is required for translation of the mitochondrial cytochrome b mRNA of Saccharomyces cerevisiae, J. Biol. Chem., 277, 37987–37990.CrossRefGoogle Scholar
  11. 11.
    Manthey, G. M., and McEwen, J. E. (1995) The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron–con–taining RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae, EMBO J., 14, 4031–4043.CrossRefGoogle Scholar
  12. 12.
    De Silva, D., Poliquin, S., Zeng, R., Zamudio–Ochoa, A., Marrero, N., Perez–Martinez, X., Fontanesi, F., and Barrientos, A. (2017) The DEAD–box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA–specific translation, Nucleic Acids Res., 45, 6628–6643.CrossRefGoogle Scholar
  13. 13.
    Su, C. H., McStay, G. P., and Tzagoloff, A. (2014) The Cox3p assembly module of yeast cytochrome oxidase, Mol. Biol. Cell, 25, 965–976.CrossRefGoogle Scholar
  14. 14.
    Kehrein, K., Schilling, R., Moller–Hergt, B. V., Wurm, C. A., Jakobs, S., Lamkemeyer, T., Langer, T., and Ott, M. (2015) Organization of mitochondrial gene expression in two distinct ribosome–containing assemblies, Cell Rep., S2211–1247(15)00025–X.CrossRefGoogle Scholar
  15. 15.
    Desai, N., Brown, A., Amunts, A., and Ramakrishnan, V. (2017) The structure of the yeast mitochondrial ribosome, Science, 355, 528–531.CrossRefGoogle Scholar
  16. 16.
    Amunts, A., Brown, A., Bai, X. C., Llacer, J. L., Hussain, T., Emsley, P., Long, F., Murshudov, G., Scheres, S. H., and Ramakrishnan, V. (2014) Structure of the yeast mito–chondrial large ribosomal subunit, Science, 343, 1485–1489.CrossRefGoogle Scholar
  17. 17.
    Gerace, E., and Moazed, D. (2014) Coimmunoprecipita–tion of proteins from yeast, Methods Enzymol., 541, 13–26.CrossRefGoogle Scholar
  18. 18.
    Hussain, T., Llacer, J. L., Wimberly, B. T., Kieft, J. S., and Ramakrishnan, V. (2016) Large–scale movements of IF3 and tRNA during bacterial translation initiation, Cell, 167, 133–144.e13.CrossRefGoogle Scholar
  19. 19.
    Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O’Shea, E. K., and Weissman, J. S. (2003) Global analysis of protein expression in yeast, Nature, 425, 737–741.CrossRefGoogle Scholar
  20. 20.
    Derbikova, K. S., Levitsky, S. A., Chicherin, I. V., Vinogradova, E. N., and Kamenski, P. A. (2018) Activation of yeast mitochondrial translation: who is in charge? Biochemistry (Moscow), 83, 87–97.CrossRefGoogle Scholar
  21. 21.
    Goyal, A., Belardinelli, R., and Rodnina, M. V. (2017) Non–canonical binding site for bacterial initiation factor 3 on the large ribosomal subunit, Cell Rep., 20, 3113–3122.CrossRefGoogle Scholar
  22. 22.
    Levitskii, S., Derbikova, K., Baleva, M. V., Kuzmenko, A., Golovin, A. V., Chicherin, I., Krasheninnikov, I. A., and Kamenski, P. (2018) 60S dynamic state of bacterial ribo–some is fixed by yeast mitochondrial initiation factor 3, PeerJ, 6, e5620.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • I. V. Chicherin
    • 1
  • V. V. Zinina
    • 1
  • S. A. Levitskiy
    • 1
  • M. V. Serebryakova
    • 2
  • P. A. Kamenski
    • 1
    Email author
  1. 1.Lomonosov Moscow State UniversityFaculty of BiologyMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations