Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 12–13, pp 1552–1562 | Cite as

Application of the CRISPR/Cas System for Generation of Pathogen-Resistant Plants

  • S. S. Makarova
  • A. V. Khromov
  • N. A. Spechenkova
  • M. E. Taliansky
  • N. O. KalininaEmail author
Review
  • 1 Downloads

Abstract

The use of the CRISPR/Cas9 prokaryotic adaptive immune system has led to a breakthrough in targeted genome editing in eukaryotes. The CRISPR/Cas technology allows to generate organisms with desirable characteristics by introducing deletions/insertions into selected genome loci resulting in the knockout or modification of target genes. This review focuses on the current state of the CRISPR/Cas use for the generation of plants resistant to viruses, bacteria, and parasitic fungi. Resistance to DNA–and RNA–containing viruses is usually provided by expression in transgenic plants of the Cas endonuclease gene and short guide RNAs (sgRNAs) targeting certain sites in the viral or the host plant genomes to ensure either direct cleavage of the viral genome or modification of the plant host genome in order to decrease the efficiency of virus replication. Editing of plant genes involved in the defense response to pathogens increases plants resistance to bacteria and pathogenic fungi. The review explores strategies and prospects of the development of pathogen–resistant plants with a focus on the generation of non–transgenic (non–genetically modified) organisms, in particular, by using plasmid (DNA)–free systems for delivery of the Cas/sgRNA editing complex into plant cells.

Keywords

plants CRISPR/Cas system genome editing plant viruses bacteria fungi resistance to pathogen infection 

Abbreviations

BeYDV

Bean yellow dwarf virus

BSCTV

Beet severe curly top virus

Cas9

CRISPR–associated endonuclease 9

CLCuKoV

Cotton leaf curl Kokhran virus

CMV

Cucumber mosaic virus

CRISPR

clustered regularly interspaced short palindromic repeats

CVYV

Cucumber vein yellowing virus

GMO

genetically modified organism

IR

intergenic region

MeMV

Merremia mosaic virus

PAM

protospacer–associated motif

PRSV

Papaya ring spot mosaic virus

sgRNA

short guide RNA

TGMV

Tomato golden mosaic virus

TuMV

Turnip mosaic virus

TYLCV

Tomato yellow leaf curl virus

ZYMV

Zucchini yellow mosaic virus

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Palukaitis, P., Groen, S. C., and Carr, J. P. (2013) The Rumsfeld paradox: some of the things we know that we don’t know about plant virus infection, Curr. Opin. Plant Biol., 16, 513–519.Google Scholar
  2. 2.
    FAO, WFP, IFAD (2012) The State of Food Insecurity in the World 2012. Economic Growth Is Necessary but not Sufficient to Accelerate Reduction of Hunger and Malnutrition, Rome, FAO.Google Scholar
  3. 3.
    Sudarshana, M. R., Roy, G., and Falk, B. W. (2007) Methods for engineering resistance to plant viruses, Methods Mol. Biol., 354, 183–195.Google Scholar
  4. 4.
    Reddy, D. V. R., Sudarshana, M. R., Fuchs, M., Rao, N. C., and Thottappilly, G. (2009) Genetically engineered virus–resistant plants in developing countries: current status and future prospects, Adv. Virus Res., 75, 185–220.Google Scholar
  5. 5.
    Palukaitis, P. (2012) Resistance to viruses of potato and their vectors, Plant Pathol., 28, 248–258.Google Scholar
  6. 6.
    Arif, M., Azhar, U., Arshad, M., Zafar, Y., Mansoor, S., and Asad, S. (2012) Engineering broad–spectrum resistance against RNA viruses in potato, Transgen. Res., 21, 303–311.Google Scholar
  7. 7.
    Wright, A. V., Nunez, J. K., and Doudna, J. A. (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering, Cell, 164, 29–44.Google Scholar
  8. 8.
    Shmakov, S. A., Sitnik, V., Makarova, K. S., Wolf, Y. I., Severinov, K. V., and Koonin, E. V. (2017) The CRISPR spacer space is dominated by sequences from species–specific mobilomes, MBio, 8, e01397–17.Google Scholar
  9. 9.
    Weeks, D. P., Spalding, M. H., and Yang, B. (2016) Use of designer nucleases for targeted gene and genome editing in plants, Plant Biotech., 14, 483–495.Google Scholar
  10. 10.
    Mohanta, T. K., Bashir, T., Hashem, A., Abd–Allah, E. F., and Bae, H. (2017) Genome editing tools in plants, Genes, 8,399.Google Scholar
  11. 11.
    Dominguez, A. A., Lim, W. A., and Qi, L. S. (2016) Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation, Nat. Rev. Mol. Cell Biol., 17, 5–15.Google Scholar
  12. 12.
    Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., and Horvath, P. (2007) CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709–1712.Google Scholar
  13. 13.
    Chaparro–Garcia, A., Kamoun, S., and Nekrasov, V. (2015) Boosting plant immunity with CRISPR/Cas, Gen. Biol., 16,254.Google Scholar
  14. 14.
    Zaidi, S. S., Mansoor, S., Ali, Z., Tashkandi, M., and Mahfouz, M. M. (2016) Engineering plants for geminivirus resistance with CRISPR/Cas9 system, Trends Plant Sci., 21, 279–281.Google Scholar
  15. 15.
    Khatodia, S., Bhatotia, K., and Tuteja, N. (2017) Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops, Bioengineered, 8, 274–279.Google Scholar
  16. 16.
    Cong, L., Ran, F. A., Cox, D., Lin, S., Barrettoo, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819–823.Google Scholar
  17. 17.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012) A programmable dual–RNA–guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816–821.Google Scholar
  18. 18.
    Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., and Joung, J. K. (2014) Improving CRISPR–Cas nuclease specificity using truncated guide RNAs, Nat. Biotech., 32, 279–284.Google Scholar
  19. 19.
    Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A., and Liu, D. R. (2013) High–throughput profiling of off–target DNA cleavage reveals RNA–programmed Cas9 nuclease specificity, Nat. Biotech., 31, 839–843.Google Scholar
  20. 20.
    Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S., and Kim, J. S. (2014) Analysis of off–target effects of CRISPR/Cas–derived RNA–guided endonucleases and nickases, Genome Res., 24, 132–141.Google Scholar
  21. 21.
    Andersson, M., Turesson, H., Olsson, N., Falt, A. S., Ohlsson, P., Gonzalez, M. N., Samuelsson, M., and Hofvander, P. (2018) Genome editing in potato via CRISPR–Cas9 ribonucleoprotein delivery, Physiol. Plant., doi: 10.1111/ppl.12731.Google Scholar
  22. 22.
    Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y., and Gao, C. (2017) Efficient DNA–free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes, Nat. Commun., 8, 14261.Google Scholar
  23. 23.
    Ji, X., Zhang, H., Zhang, Y., Wang, Y., and Gao, C. (2015) Establishing a CRISPR–Cas–like immune system conferring DNA virus resistance in plants, Nat. Plants, 1, 15144.Google Scholar
  24. 24.
    Baltes, N. J., Hummel, A. W., Konecna, E., Cegan, R., Bruns, A. N., Bisaro, D. M., and Voytas, D. F. (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system, Nat. Plants, 1, 15145.Google Scholar
  25. 25.
    Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M., and Mahfouz, M. M. (2015) CRISPR/Cas9–mediated viral interference in plants, Gen. Biol., 16,238.Google Scholar
  26. 26.
    Ali, Z., Ali, S., Tashkandi, M., Zaidi, S. S., and Mahfouz, M. M. (2016) CRISPR/Cas9–mediated immunity to geminiviruses: differential interference and evasion, Sci. Rep., 6, 26912.Google Scholar
  27. 27.
    Tashkandi, M., Ali, Z., Aljedaani, F., Shami, A., and Mahfouz, M. M. (2018) Engineering resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato, Plant Signal Behav., 5, 1–7.Google Scholar
  28. 28.
    Sampson, T. R., Saroj, S. D., Llewellyn, A. C., Tzeng, Y. L., and Weiss, D. S. (2013) A CRISPR/Cas system mediates bacterial innate immune evasion and virulence, Nature, 497, 254–257.Google Scholar
  29. 29.
    O’Connell, M. R., Oakes, B. L., Sternberg, S. H., East–Seletsky, A., Kaplan, M., and Doudna, J. A. (2014) Programmable RNA recognition and cleavage by CRISPR/Cas9, Nature, 516, 263–236.Google Scholar
  30. 30.
    Zhang, T., Zheng, Q., Yi, X., An, H., Zhao, Y., Ma, S., and Zhou, G. (2018) Establishing RNA virus resistance in plants by harnessing CRISPR immune system, Plant Biotech., 16, 1415–1423.Google Scholar
  31. 31.
    Abudayyeh, O., Gootenberg, J., Konermann, S., Joung, J., Slaymaker, I. M., Cox, D. B. T., Shmakov, S., Makarova, K. S., Semenova, E., Minakhin, L., Severinov, K., Regev, A., Lander, E. S., Koonin, E. V., and Zhang, F. (2016) C2c2 is a single–component programmable RNA–guided RNA–targeting CRISPR effector, Science, 353, aaf5573.Google Scholar
  32. 32.
    Abudayyeh, O., Gootenberg, J. S., Essletzbichler, P., Han, S., Joung, J., Belanto, J. J., Verdine, V., Cox, D. B. T., Kellner, M. J., Regev, A., Lander, E. S., Voytas, D. F., Ting, A. Y., and Zhang, F. (2017) RNA targeting with CRISPR–Cas13, Nature, 550, 280–284.Google Scholar
  33. 33.
    Robaglia, C., and Caranta, C. (2006) Translation initiation factors: a weak link in plant RNA virus infection, Trends Plant Sci., 11, 40–45.Google Scholar
  34. 34.
    Estevan, J., Marena, A., Callot, C., Lacombe, S., Moretti, A., Caranta, C., and Gallois, J. L. (2014) Specific requirement for translation initiation factor 4E or its isoform drives plant host susceptibility to tobacco etch virus, BMC Plant Biol., 14,67.Google Scholar
  35. 35.
    Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., and Gal-On, A. (2016) Development of broad virus resistance in non–transgenic cucumber using CRISPR/Cas9 technology, Mol. Plant Pathol., 17, 1140–1153.Google Scholar
  36. 36.
    Pyott, D. E., Sheehan, E., and Molnar, A. (2016) Engineering of CRISPR/Cas9–mediated potyvirus resistance in transgene–free Arabidopsis plants, Mol. Plant Pathol., 17, 1276–1288.Google Scholar
  37. 37.
    Jones, H. D. (2015) Regulatory uncertainty over genome editing, Nat. Plants, 1, 14011.Google Scholar
  38. 38.
    Sprink, T., Eriksson, D., Schiemann, J., and Hartung, F. (2016) Regulatory hurdles for genome editing: process–vs. product–based approaches in different regulatory contexts, Plant Cell Rep., 35, 1493–1506.Google Scholar
  39. 39.
    Kanchiswamy, C. N. (2016) DNA–free genome editing methods for targeted crop improvement, Plant Cell Rep., 35, 1469–1474.Google Scholar
  40. 40.
    Kanchiswamy, C. N., Malnoy, M., Velasco, R., Kim, J. S., and Viola, R. (2015) Non–GMO genetically edited crop plants, Trends Biotech., 33, 489–491.Google Scholar
  41. 41.
    Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K., and Cigan, M. (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes, Nat. Comm., 7, 13274.Google Scholar
  42. 42.
    Martin–Ortigosa, S., Peterson, D. J., Valenstein, J. S., Lin, V. S., Trewyn, B. G., Lyznik, L. A., and Wang, K. (2014) Mesoporous silica nanoparticle mediated intracellular Cre protein delivery for maize genome editing via loxP sites excision, Plant Phys., 164, 537–547.Google Scholar
  43. 43.
    Woo, J. W., Kim, J., Kwon, S. I., Corvalan, C., Cho, S. W., Kim, H., Kim, S. G., Kim, S. T., Choe, S., and Kim, J. S. (2015) DNA–free genome editing in plants with preassembled CRISPR–Cas9 ribonucleoproteins, Nat. Biotech., 33, 1162–1164.Google Scholar
  44. 44.
    Liang, G., Zhang, H., Lou, D., and Yu, D. (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9–based plant genome editing, Sci. Rep., 6, 21451.Google Scholar
  45. 45.
    Peng, A., Chen, S., Lei, T., Xu, L., He, Y., Wu, L., Yao, L., and Zou, X. (2017) Engineering canker–resistant plants through CRISPR/Cas9–targeted editing of the susceptibility gene CsLOB1 promoter in citrus, Plant Biotech., 15, 1509–1519.Google Scholar
  46. 46.
    Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y. G., and Zhao, K. (2016) Enhanced rice blast resistance by CRISPR/Cas9–targeted mutagenesis of the ERF transcription factor gene OsERF922, PloS One, 11, e0154027.Google Scholar
  47. 47.
    Liu, D., Chen, X., Liu, J., Ye, J., and Guo, Z. (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance, J. Exp. Bot., 63, 3899–3911.Google Scholar
  48. 48.
    Knott, G. J., and Doudna, J. A. (2018) CRISPR–Cas guides the future of genetic engineering, Science, 361, 866–869.Google Scholar
  49. 49.
    Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J. J., Charpentier, E., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Terns, R. M., Terns, M. P., White, M. F., Yakunin, A. F., Garrett, R. A., van der Oost, J., Backofen, R., and Koonin, E. V. (2015) An updated evolutionary classification of CRISPR–Cas systems, Nat. Rev. Microbiol., 13, 722–736.Google Scholar
  50. 50.
    Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., Abudayyeh, O. O., Gootenberg, J. S., Makarova, K. S., Wolf, Y. I., Severinov, K., Zhang, F., and Koonin, E. V. (2017) Diversity and evolution of class 2 CRISPR–Cas systems, Nat. Rev. Microbiol, 15, 169–182.Google Scholar
  51. 51.
    Koonin, E. V., Makarova, K. S., and Zhang, F. (2017) Diversity, classification and evolution of CRISPR–Cas systems, Curr. Opin. Microbiol., 37, 67–78.Google Scholar
  52. 52.
    Murugan, K., Babu, K., Sundaresan, R., Rajan, R., and Sashital, D. G. (2017) The revolution continues: newly discovered systems expand the CRISPR–Cas toolkit, Mol. Cell, 68, 15–25.Google Scholar
  53. 53.
    Hsu, P. D., Lander, E. S., and Zhang, F. (2014) Development and applications of CRISPR–Cas9 for genome engineering, Cell, 157, 1262–1278.Google Scholar
  54. 54.
    Sternberg, S. H., Richter, H., Charpentier, E., and Qimron, U. (2016) Adaptation in CRISPR–Cas systems, Mol. Cell, 61, 797–808.Google Scholar
  55. 55.
    Wang, A. (2015) Dissecting the molecular network of virus–plant interactions: the complex roles of host factors, An. Rev. Phytopathol., 53, 45–66.Google Scholar
  56. 56.
    Gill, U. S., Lee, S., and Mysore, K. S. (2015) Host versus nonhost resistance: distinct wars with similar arsenals, Phytopathology, 105, 580–587.Google Scholar
  57. 57.
    Lee, S., Whitaker, V. M., and Hutton, S. F. (2016) Mini review: potential applications of non–host resistance for crop improvement, Front. Plant Sci., 7,997.Google Scholar
  58. 58.
    Love, A. J., Yu, C., Petukhova, N. V., Kalinina, N. O., Chen, J., and Taliansky, M. E. (2017) Cajal bodies and their role in plant stress and disease responses, RNA Biol., 14, 779–790.Google Scholar
  59. 59.
    Kalinina, N. O., Makarova, S., Makhotenko, A., Love, A. J., and Taliansky, M. (2018) The multiple functions of the nucleolus in plant development, disease and stress responses, Front. Plant Sci., 9,132.Google Scholar
  60. 60.
    Shaw, J., Love, A. J., Makarova, S. S., Kalinina, N. O., Harrison, B. D., and Taliansky, M. E. (2014) Coilin, the signature protein of Cajal bodies, differentially modulates the interactions of plants with viruses in widely different taxa, Nucleus, 5, 85–94.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. S. Makarova
    • 1
    • 2
  • A. V. Khromov
    • 1
    • 2
  • N. A. Spechenkova
    • 3
  • M. E. Taliansky
    • 1
    • 3
  • N. O. Kalinina
    • 1
    • 2
    • 3
    Email author
  1. 1.Doka-Gene Technology Ltd.Rogachevo, Moscow RegionRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations