Biochemistry (Moscow)

, Volume 83, Issue 12–13, pp 1534–1542 | Cite as

Potential Markers of Autoimmune Diseases, Alleles rs115662534(T) and rs548231435(C), Disrupt the Binding of Transcription Factors STAT1 and EBF1 to the Regulatory Elements of Human CD40 Gene

  • L. V. Putlyaeva
  • D. E. Demin
  • K. V. Korneev
  • A. S. Kasyanov
  • K. A. Tatosyan
  • I. V. Kulakovskiy
  • D. V. Kuprash
  • A. M. SchwartzEmail author


CD40 receptor is expressed on B lymphocytes and other professional antigen–presenting cells. The binding of CD40 to its ligand CD154 on the surface of T helper cells plays an important role in the activation of B lymphocytes required for production of antibodies, in particular, against autoantigens. Association of several single nucleotide polymorphisms (SNPs) located in the non–coding areas of human CD40 locus with the elevated risk of autoimmune diseases has been demonstrated. The most studied of these SNPs is rs4810485 located in the first intron of the CD40 gene. Expression of the CD40 gene in B lymphocytes of donors homozygous for the common allelic variant of this polymorphism (G) is higher than in B cells from donors carrying the minor (T) variant. We investigated the enhancer activity of this fragment of the CD40 locus in human B cell lines and showed that it is independent on the rs4810485 alleles. However, the minor allelic variants of the rs4810485–linked SNPs rs548231435 and rs115662534 were associated with a significant decrease in the activity of the CD40 promoter due to the impairments in the binding of EBF1 and STAT1 transcription factors, respectively.


autoimmune diseases polymorphism CD40 transcription regulation 



single nucleotide polymorphism


tumor necrosis factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chatzigeorgiou, A., Lyberi, M., Chatzilymperis, G., Nezos, A., and Kamper, E. (2009) CD40/CD40L signaling and its implication in health and disease, Biofactors, 35, 474–483.CrossRefGoogle Scholar
  2. 2.
    Grewal, I. S., and Flavell, R. A. (1998) CD40 and CD154 in cell–mediated immunity, Annu. Rev. Immunol., 16, 111–135.CrossRefGoogle Scholar
  3. 3.
    Lane, P., Traunecker, A., Hubele, S., Inui, S., Lanzavecchia, A., and Gray, D. (1992) Activated human T cells express a ligand for the human B cell–associated antigen CD40 which participates in T cell–dependent activation of B lymphocytes, Eur. J. Immunol., 22, 2573–2578.CrossRefGoogle Scholar
  4. 4.
    Cella, M., Scheidegger, D., Palmer–Lehmann, K., Lane, P., Lanzavecchia, A., and Alber, G. (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin–12 and enhances T cell stimulatory capacity: T–T help via APC activation, J. Exp. Med., 184, 747–752.CrossRefGoogle Scholar
  5. 5.
    Summers deLuca, L., and Gommerman, J. L. (2012) Fine-tuning of dendritic cell biology by the TNF superfamily, Nat. Rev. Immunol., 12, 339–351.CrossRefGoogle Scholar
  6. 6.
    Stout, R. D., Suttles, J., Xu, J., Grewal, I. S., and Flavell, R. A. (1996) Impaired T cell–mediated macrophage activation in CD40 ligand–deficient mice, J. Immunol., 156, 8–11.Google Scholar
  7. 7.
    Suttles, J., and Stout, R. D. (2009) Macrophage CD40 signaling: a pivotal regulator of disease protection and pathogenesis, Semin. Immunol., 21, 257–264.CrossRefGoogle Scholar
  8. 8.
    Peters, A. L., Stunz, L. L., and Bishop, G. A. (2009) CD40 and autoimmunity: the dark side of a great activator, Semin. Immunol., 21, 293–300.CrossRefGoogle Scholar
  9. 9.
    Choi, E. W., Lee, K. W., Park, H., Kim, H., Lee, J. H., Song, J. W., Yang, J., Kwon, Y., Kim, T. M., Park, J. B., and Kim, S. (2018) Therapeutic effects of anti–CD154 antibody in cynomolgus monkeys with advanced rheumatoid arthritis, Sci. Rep., 8, 2135.CrossRefGoogle Scholar
  10. 10.
    ‘t Hart, B. A., Blezer, E. L., Brok, H. P., Boon, L., de Boer, M., Bauer, J., and Laman, J. D. (2005) Treatment with chimeric anti–human CD40 antibody suppresses MRI–detectable inflammation and enlargement of pre–existing brain lesions in common marmosets affected by MOG–induced EAE, J. Neuroimmunol., 163, 31–39.CrossRefGoogle Scholar
  11. 11.
    Croft, M., Benedict, C. A., and Ware, C. F. (2013) Clinical targeting of the TNF and TNFR superfamilies, Nat. Rev. Drug Discov., 12, 147–168.CrossRefGoogle Scholar
  12. 12.
    Jacobson, E. M., Concepcion, E., Oashi, T., and Tomer, Y. (2005) A Graves’ disease–associated Kozak sequence single–nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology, Endocrinology, 146, 2684–2691.CrossRefGoogle Scholar
  13. 13.
    Jacobson, E. M., Huber, A. K., Akeno, N., Sivak, M., Li, C. W., Concepcion, E., Ho, K., and Tomer, Y. (2007) A CD40 Kozak sequence polymorphism and susceptibility to antibody–mediated autoimmune conditions: the role of CD40 tissue–specific expression, Genes Immun., 8, 205–214.CrossRefGoogle Scholar
  14. 14.
    Lee, Y. H., Bae, S. C., Choi, S. J., Ji, J. D., and Song, G. G. (2015) Associations between the functional CD40 rs4810485 G/T polymorphism and susceptibility to rheumatoid arthritis and systemic lupus erythematosus: a meta–analysis, Lupus, 24, 1177–1183.CrossRefGoogle Scholar
  15. 15.
    Raychaudhuri, S., Remmers, E. F., Lee, A. T., Hackett, R., Guiducci, C., Burtt, N. P., Gianniny, L., Korman, B. D., Padyukov, L., Kurreeman, F. A., Chang, M., Catanese, J. J., Ding, B., Wong, S., van der Helm–van Mil, A. H., Neale, B. M., Coblyn, J., Cui, J., Tak, P. P., Wolbink, G. J., Crusius, J. B., van der Horst–Bruinsma, I. E., Criswell, L. A., Amos, C. I., Seldin, M. F., Kastner, D. L., Ardlie, K. G., Alfredsson, L., Costenbader, K. H., Altshuler, D., Huizinga, T. W., Shadick, N. A., Weinblatt, M. E., de Vries, N., Worthington, J., Seielstad, M., Toes, R. E., Karlson, E. W., Begovich, A. B., Klareskog, L., Gregersen, P. K., Daly, M. J., and Plenge, R. M. (2008) Common variants at CD40 and other loci confer risk of rheumatoid arthritis, Nat. Genet., 40, 1216–1223.CrossRefGoogle Scholar
  16. 16.
    Smets, I., Fiddes, B., Garcia–Perez, J. E., He, D., Mallants, K., Liao, W., Dooley, J., Wang, G., Humblet–Baron, S., Dubois, B., Compston, A., Jones, J., Coles, A., Liston, A., Ban, M., Goris, A., and Sawcer, S. (2018) Multiple sclerosis risk variants alter expression of co–stimulatory genes in B cells, Brain, doi: 10.1093/brain/awx372.Google Scholar
  17. 17.
    Vazgiourakis, V. M., Zervou, M. I., Choulaki, C., Bertsias, G., Melissourgaki, M., Yilmaz, N., Sidiropoulos, P., Plant, D., Trouw, L. A., Toes, R. E., Kardassis, D., Yavuz, S., Boumpas, D. T., and Goulielmos, G. N. (2011) A common SNP in the CD40 region is associated with systemic lupus erythematosus and correlates with altered CD40 expression: implications for the pathogenesis, Ann. Rheum. Dis., 70, 2184–2190.CrossRefGoogle Scholar
  18. 18.
    Schwartz, A. M., Demin, D. E., Vorontsov, I. E., Kasyanov, A. S., Putlyaeva, L. V., Tatosyan, K. A., Kulakovskiy, I. V., and Kuprash, D. V. (2017) Multiple single nucleotide polymorphisms in the first intron of the IL2RA gene affect transcription factor binding and enhancer activity, Gene, 602, 50–56.CrossRefGoogle Scholar
  19. 19.
    Pistillo, M. P., Tanigaki, N., Chua, R., Mazzoleni, O., and Ferrara, G. B. (1989) Human anti–HLA–DQw2 monoclonal antibody secreted by an Epstein–Barr–virus–transformed lymphoblastoid cell line: assessment of the monoclonality, allospecificity, and target, Hum. Immunol., 24, 253–263.CrossRefGoogle Scholar
  20. 20.
    Schwartz, A. M., Putlyaeva, L. V., Covich, M., Klepikova, A. V., Akulich, K. A., Vorontsov, I. E., Korneev, K. V., Dmitriev, S. E., Polanovsky, O. L., Sidorenko, S. P., Kulakovskiy, I. V., and Kuprash, D. V. (2016) Early B–cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells, Biochim. Biophys. Acta, 1859, 1259–1268.CrossRefGoogle Scholar
  21. 21.
    Bachmann, S. B., Frommel, S. C., Camicia, R., Winkler, H. C., Santoro, R., and Hassa, P. O. (2014) DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells, Mol. Cancer, 13,125.CrossRefGoogle Scholar
  22. 22.
    Hasson, S. A., Kane, L. A., Yamano, K., Huang, C. H., Sliter, D. A., Buehler, E., Wang, C., Heman–Ackah, S. M., Hessa, T., Guha, R., Martin, S. E., and Youle, R. J. (2013) High–content genome–wide RNAi screens identify regulators of parkin upstream of mitophagy, Nature, 504, 291–295.CrossRefGoogle Scholar
  23. 23.
    Putlyaeva, L. V., Schwartz, A. M., Korneev, K. V., Covic, M., Uroshlev, L. A., Makeev, V. Y., Dmitriev, S. E., and Kuprash, D. V. (2014) Upstream open reading frames regulate translation of the long isoform of SLAMF1 mRNA that encodes costimulatory receptor CD150, Biochemistry (Moscow), 79, 1405–1411.CrossRefGoogle Scholar
  24. 24.
    Rosenbloom, K. R., Armstrong, J., Barber, G. P., Casper, J., Clawson, H., Diekhans, M., Dreszer, T. R., Fujita, P. A., Guruvadoo, L., Haeussler, M., Harte, R. A., Heitner, S., Hickey, G., Hinrichs, A. S., Hubley, R., Karolchik, D., Learned, K., Lee, B. T., Li, C. H., Miga, K. H., Nguyen, N., Paten, B., Raney, B. J., Smit, A. F., Speir, M. L., Zweig, A. S., Haussler, D., Kuhn, R. M., and Kent, W. J. (2015) The UCSC Genome Browser database: 2015 update, Nucleic Acids Res., 43, D670–681.CrossRefGoogle Scholar
  25. 25.
    Nguyen, V. T., and Benveniste, E. N. (2000) Involvement of STAT–1 and Ets family members in interferon–gamma induction of CD40 transcription in microglia/macrophages, J. Biol. Chem., 275, 23674–23684.CrossRefGoogle Scholar
  26. 26.
    Yevshin, I., Sharipov, R., Valeev, T., Kel, A., and Kolpakov, F. (2017) GTRD: a database of transcription factor binding sites identified by ChIP–seq experiments, Nucleic Acids Res., 45, D61–D67.CrossRefGoogle Scholar
  27. 27.
    Kulakovskiy, I. V., Vorontsov, I. E., Yevshin, I. S., Sharipov, R. N., Fedorova, A. D., Rumynskiy, E. I., Medvedeva, Y. A., Magana–Mora, A., Bajic, V. B., Papatsenko, D. A., Kolpakov, F. A., and Makeev, V. J. (2018) HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large–scale ChIP–Seq analysis, Nucleic Acids Res., 46, D252–D259.CrossRefGoogle Scholar
  28. 28.
    McCarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B., Little, J., Ioannidis, J. P., and Hirschhorn, J. N. (2008) Genome–wide association studies for complex traits: consensus, uncertainty and challenges, Nat. Rev. Genet., 9, 356–369.CrossRefGoogle Scholar
  29. 29.
    Toubi, E., and Shoenfeld, Y. (2004) The role of CD40–CD154 interactions in autoimmunity and the benefit of disrupting this pathway, Autoimmunity, 37, 457–464.CrossRefGoogle Scholar
  30. 30.
    Dong, L., Chen, X., Shao, H., Bai, L., Li, X., and Zhang, X. (2018) Mesenchymal stem cells inhibited dendritic cells via the regulation of STAT1 and STAT6 phosphorylation in experimental autoimmune uveitis, Curr. Mol. Med., 17, 478–487.CrossRefGoogle Scholar
  31. 31.
    Luo, S., Liu, Y., Liang, G., Zhao, M., Wu, H., Liang, Y., Qiu, X., Tan, Y., Dai, Y., Yung, S., Chan, T. M., and Lu, Q. (2015) The role of microRNA–1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus, Clin. Epigenetics, 7,24.CrossRefGoogle Scholar
  32. 32.
    Ramos, P. S., Shedlock, A. M., and Langefeld, C. D. (2015) Genetics of autoimmune diseases: insights from population genetics, J. Hum. Genet., 60, 657–664.CrossRefGoogle Scholar
  33. 33.
    Itariu, B. K., and Stulnig, T. M. (2014) Autoimmune aspects of type 2 diabetes mellitus–a mini–review, Gerontology, 60, 189–196.CrossRefGoogle Scholar
  34. 34.
    Mammana, S., Fagone, P., Cavalli, E., Basile, M. S., Petralia, M. C., Nicoletti, F., Bramanti, P., and Mazzon, E. (2018) The role of macrophages in neuroinflammatory and neurodegenerative pathways of Alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis: pathogenetic cellular effectors and potential therapeutic targets, Int. J. Mol. Sci., 19, E831.Google Scholar
  35. 35.
    Nesher, G., and Moore, T. L. (1993) Rheumatoid arthritis in the aged. Incidence and optimal management, Drugs Aging, 3, 487–501.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • L. V. Putlyaeva
    • 1
  • D. E. Demin
    • 1
    • 2
  • K. V. Korneev
    • 1
    • 3
  • A. S. Kasyanov
    • 4
  • K. A. Tatosyan
    • 1
  • I. V. Kulakovskiy
    • 1
    • 4
    • 5
  • D. V. Kuprash
    • 1
    • 2
    • 3
  • A. M. Schwartz
    • 1
    • 2
    Email author
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of Molecular and Biological PhysicsMoscow Institute of Physics and TechnologyDolgoprudny, Moscow RegionRussia
  3. 3.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  4. 4.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  5. 5.Institute of Mathematical Problems of Biology, Keldysh Institute of Applied MathematicsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations