Biochemistry (Moscow)

, Volume 83, Issue 12–13, pp 1524–1533 | Cite as

Can Aging Be Programmed?

  • J. MitteldorfEmail author


Aging diminishes individual fitness, and aging could never evolve as an adaptive program according to the most prevalent model of evolutionary theory. On the other hand, some mechanisms of aging have been found to be conserved since the Cambrian explosion, and the physiology of aging sometimes looks like programmed self–destruction. Biostatisticians find evidence of an epigenetic aging clock, extending the clock that controls the growth and development into a realm of inexorably increasing mortality. These and other observations have suggested to some biologists that our understanding of aging is being constrained by restrictive evolutionary paradigms. Several computational models have been proposed; but evolution of an aging program requires group selection on a scale that goes beyond the theory of multilevel selection, a perspective that is already controversial. So, the question whether plausible models exist that can account for aging as a group–selected adaptation is central to our understanding of what aging is, where it comes from and, importantly, how anti–aging medicine might most propitiously be pursued. In a 2016 Aging Cell article, Kowald and Kirkwood reviewed computational models that evolve aging as an adaptation. They find fault with each of these models in turn, based on theory alone, and on this basis, they endorse the standing convention that aging must be understood in terms of trade–off models. But consideration of the corpus of experimental evidence creates a picture that stands in counterpoint to the conclusions of that review. Presented herein is a broad summary of that evidence, together with a description of one model that Kowald and Kirkwood omitted, the demographic theory of aging, which may be the most conservative, and therefore most plausible of the alternative evolutionary theories, and which is the subject of a book by the present author, published contemporaneously with Kowald and Kirkwood.


aging evolution programmed aging simulation computational model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kowald, A., and Kirkwood, T. B. (2016) Can aging be programmed? A critical literature review, Aging Cell, 15, 986–998.CrossRefPubMedGoogle Scholar
  2. 2.
    Libertini, G. (1988) An adaptive theory of the increasing mortality with increasing chronological age in populations in the wild, J. Theor. Biol., 132, 145–162.CrossRefPubMedGoogle Scholar
  3. 3.
    Bredesen, D. E. (2004) The non–existent aging program: how does it work? Aging Cell, 3, 255–259.CrossRefPubMedGoogle Scholar
  4. 4.
    Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.Google Scholar
  5. 5.
    Goldsmith, T. (2003) The Evolution of Aging, Azinet Press.Google Scholar
  6. 6.
    Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Lion, L. L., Diaspro, A., Dossen, J. W., Gralla, E. B., and Longo, V. D. (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae, J. Cell Biol., 166, 1055–1067.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dytham, C., and Travis, J. M. (2006) Evolving dispersal and age at death, Oikos, 113, 530–538.CrossRefGoogle Scholar
  8. 8.
    Fahy, G. (2010) Precedents for the biological control of aging: postponement, prevention and reversal of aging processes, in Approaches to the Control of Aging: Building a Pathway to Human Life Extension (Fahy, G. M., ed.) Springer, New York.Google Scholar
  9. 9.
    Bowles, J. T. (1998) The evolution of aging: a new approach to an old problem of biology, Med. Hypotheses, 51, 179–221.CrossRefPubMedGoogle Scholar
  10. 10.
    Dilman, V. M., and Dean, W. (1992) The Neuroendocrine Theory of Aging and Degenerative Disease, Center for BioGerontology, Pensacola, Florida.Google Scholar
  11. 11.
    Bernardes de Jesus, B., and Blasco, M. A. (2012) Potential of telomerase activation in extending health span and longevity, Curr. Opin. Cell Biol., 24, 739–743.CrossRefPubMedGoogle Scholar
  12. 12.
    Andrews, W. H., Briggs, L., Brown, L. K., Foster, C. A., and Piatyszek, M. A. (2007) Assays for TERT Promoter Modulatory Agents Using Telomerase Structural RNA Component, US Grant US7226744B2, U. P. Office, USA.Google Scholar
  13. 13.
    Fossel, M. (1997) Reversing Human Aging, HarperCollins Publishers, New York.Google Scholar
  14. 14.
    Fossel, M. (2015) The Telomerase Revolution: the Enzyme that Holds the Key to Human Aging…and Will Soon Lead to Longer, Healthier Lives, Ben Bella Books, New York.Google Scholar
  15. 15.
    Barja, G. (2004) Free radicals and aging, Trends Neurosci., 27, 595–600.CrossRefPubMedGoogle Scholar
  16. 16.
    Martinez–Cisuelo, V., Gomez, J., Garcia–Junceda, I., Naudi, A., Cabre, R., Mota–Martorell, N., Lopez–Torres, M., Gonzalez–Sanchez, M., Pamplona, R., and Barja, G. (2016) Rapamycin reverses age–related increases in mitochondrial ROS production at complex I, oxidative stress, accumulation of mtDNA fragments inside nuclear DNA, and lipofuscin level, and increases autophagy, in the liver of middle–aged mice, Exp. Gerontol., 83, 130–138.PubMedGoogle Scholar
  17. 17.
    Pepper, J. W., and Smuts, B. B. (2002) A mechanism for the evolution of altruism among nonkin: positive assortment through environmental feedback, Am. Nat., 160, 205–213.CrossRefPubMedGoogle Scholar
  18. 18.
    Stevens, L. (1989) The genetics and evolution of cannibalism in flour beetles (genus Tribolium), Evolution, 43, 169–179.PubMedGoogle Scholar
  19. 19.
    Partridge, L., and Gems, D. (2002) Mechanisms of ageing: public or private? Nature Rev. Genet., 3, 165–175.CrossRefPubMedGoogle Scholar
  20. 20.
    Guarente, L., and Kenyon, C. (2000) Genetic pathways that regulate ageing in model organisms, Nature, 408, 255–262.CrossRefPubMedGoogle Scholar
  21. 21.
    Kenyon, C. (2001) A conserved regulatory system for aging, Cell, 105, 165–168.CrossRefPubMedGoogle Scholar
  22. 22.
    Werfel, J., Ingber, D. E., and Bar–Yam, Y. (2015) Programed death is favored by natural selection in spatial systems, Phys. Rev. Lett., 114, 238103.CrossRefPubMedGoogle Scholar
  23. 23.
    Mitteldorf, J. (2004) Aging selected for its own sake, Evol. Ecol. Res., 6, 1–17.Google Scholar
  24. 24.
    De Cabo, R., Carmona–Gutierres, D., Bernier, M., Yall, M. N., and Madeo, F. (2014) The search for antiaging interventions: from elixirs to fasting regimens, Cell, 157, 1515–1526.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Katcher, H. (2013) Studies that shed new light on aging, Biochemistry (Moscow), 78, 1061–1070.CrossRefGoogle Scholar
  26. 26.
    Horvath, S. (2013) DNA methylation age of human tissues and cell types, Genome Biol., 14, R115.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Horvath, S., and Raj, K. J. (2018) DNA methylation–based biomarkers and the epigenetic clock theory of ageing, Nat. Rev. Genet., 19, 371–384.CrossRefPubMedGoogle Scholar
  28. 28.
    Finch, C. E. (1990) Longevity, Senescence and the Genome, University of Chicago Press, Chicago.Google Scholar
  29. 29.
    De Magalhaes, J. P., Curado, J., and Church, G. M. (2009) Meta–analysis of age–related gene expression profiles identifies common signatures of aging, Bioinformatics, 25, 875–881.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mitteldorf, J. (2016) Aging is a Group–Selected Adaptation: Theory, Evidence, and Medical Implications, CRC Press.CrossRefGoogle Scholar
  31. 31.
    Clark, W. R. (2004) Reflections on an unsolved problem of biology: the evolution of senescence and death, Adv. Gerontol., 14, 7–20.PubMedGoogle Scholar
  32. 32.
    Williams, G. (1957) Pleiotropy, natural selection, and the evolution of senescence, Evolution, 11, 398–411.Google Scholar
  33. 33.
    Mitteldorf, J. (2006) Chaotic population dynamics and the evolution of aging: proposing a demographic theory of senescence, Evol. Ecol. Res., 8, 561–574.Google Scholar
  34. 34.
    Mitteldorf, J., and Goodnight, C. (2012) Post–reproductive life span and demographic stability, Oikos, 121, 1370–1378.CrossRefGoogle Scholar
  35. 35.
    Masoro, E. J., and Austad, S. N. (1996) The evolution of the antiaging action of dietary restriction: a hypothesis, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 51, 387–391.CrossRefGoogle Scholar
  36. 36.
    Masoro, E. J. (2007) The role of hormesis in life extension by dietary restriction, Interdiscip. Top. Gerontol., 35, 1–17.PubMedGoogle Scholar
  37. 37.
    Clark, W. R. (1998) Sex and the Origins of Death, Oxford University Press, USA.Google Scholar
  38. 38.
    Clark, W. R. (1999) A Means to an End: the Biological Basis of Aging and Death, Oxford University Press, Oxford–New York.Google Scholar
  39. 40.
    Cawthon, R. M., Smithn, K. R., O’Brien, E., Sivatchenko, A., and Kerber, R. A. (2003) Association between telomere length in blood and mortality in people aged 60 years or older, Lancet, 361, 393–395.CrossRefPubMedGoogle Scholar
  40. 41.
    Rode, L., Nordestgaard, B. G., and Bojesen, S. E. (2015) Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population, J. Nat. Cancer Inst., 107, djv074.CrossRefPubMedGoogle Scholar
  41. 42.
    Gordeeva, A. V., Labas, Y. A., and Zvyagilskaya, R. A. (2004) Apoptosis in unicellular organisms: mechanisms and evolution, Biochemistry (Moscow), 69, 1055–1066.CrossRefGoogle Scholar
  42. 43.
    Deponte, M. J. B. (2008) Programmed cell death in protists, Biochim. Biophys. Acta, 1783, 1396–1405.CrossRefPubMedGoogle Scholar
  43. 44.
    Su, J. H., Anderson, A. J., and Cummings, B. J. (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease, Neuroreport, 5, 2529–2533.CrossRefPubMedGoogle Scholar
  44. 45.
    D’Amelio, M., Cavallucci, V., Middei, S., Marchetti, C., Pacioni, S., Ferri, A., Diamantini, A., De Zio, D., Carrara, P., Battistini, L., Moreno, S., Bacci, A., Ammassari–Teule, M., Marie, H., and Cecconi, F. (2011) Caspase–3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease, Nat. Neurosci., 14, 69–76.CrossRefPubMedGoogle Scholar
  45. 46.
    Behl, C. (2000) Apoptosis and Alzheimer’s disease, J. Neur. Trans., 107, 1325–1344.CrossRefGoogle Scholar
  46. 47.
    Marzetti, E., and Leeuwenburgh, C. (2006) Skeletal muscle apoptosis, sarcopenia and frailty at old age, Exp. Gerontol., 41, 1234–1238.Google Scholar
  47. 48.
    Pistilli, E. E., Jackson, J. R., and Alway, S. E. (2006) Death receptor–associated pro–apoptotic signaling in aged skeletal muscle, Apoptosis, 11, 2115–2126.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 49.
    Shen, J., and Tower, J. (2009) Programmed cell death and apoptosis in aging and life span regulation, Discov. Med., 8, 223–226.PubMedGoogle Scholar
  49. 50.
    Chaloupka, J., and Vinter, V. J. F. (1996) Programmed cell death in bacteria, Folia Microbiol., 41, 451–464.CrossRefGoogle Scholar
  50. 51.
    Neafsey, P. J. (1990) Longevity hormesis. A review, Mech. Ageing Dev., 51, 1–31.CrossRefPubMedGoogle Scholar
  51. 52.
    Luckey, T. D. (1991) Radiation Hormesis, CRC Press.Google Scholar
  52. 53.
    Calabrese, E. J. (2005) Toxicological awakenings: the rebirth of hormesis as a central pillar of toxicology, Toxicol. Appl. Pharmacol., 204, 1–8.CrossRefPubMedGoogle Scholar
  53. 54.
    Forbes, V. (2000) Is hormesis an evolutionary expectation? Funct. Ecol., 4, 12–24.CrossRefGoogle Scholar
  54. 55.
    Blagosklonny, M. V. (2011) Hormesis does not make sense except in the light of TOR–driven aging, Aging (Albany N. Y.), 3, 1051–1062.Google Scholar
  55. 56.
    Olsen, A., Vantipalli, M. C., and Lithgow, G. J. (2006) Lifespan extension of Caenorhabditis elegans following repeated mild hormetic heat treatments, Biogerontology, 7, 221–230.CrossRefPubMedGoogle Scholar
  56. 57.
    Holloszy, J. O., and Smith, E. K. (1986) Longevity of cold-exposed rats: a reevaluation of the “rate–of–living theory”, J. Appl. Physiol., 61, 1656–1660.CrossRefPubMedGoogle Scholar
  57. 58.
    Heywood, R., Sortwell, R. J., Noel, P. R., Street, A. E., Prentice, D. E., Roe, F. J., Wadsworth, P. F., Worden, A. N., and Van Abbe, N. J. (1979) Safety evaluation of tooth–paste containing chloroform. III. Long–term study in beagle dogs, J. Environ. Pathol. Toxicol., 2, 835–851.PubMedGoogle Scholar
  58. 59.
    Hekimi, S., Lapointe, J., and Wen, Y. (2011) Taking a “good” look at free radicals in the aging process, Trends Cell Biol., 21, 569–576.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 60.
    Ristow, M., and Schmeisser, S. (2011) Extending life span by increasing oxidative stress, Free Radic. Biol. Med., 51, 327–336.CrossRefPubMedGoogle Scholar
  60. 61.
    Caratero, A., Courtade, M., Bonnet, L., Planel, H., and Caratero, C. (1997) Effect of a continuous gamma irradiation at a very low dose on the life span of mice, Gerontology, 44, 272–276.CrossRefGoogle Scholar
  61. 62.
    Phelan, J., and Austad, S. (1988) Natural selection, dietary restriction, and extended longevity, Growth Dev. Aging, 53, 4–6.Google Scholar
  62. 63.
    Harrison, D. E., and Archer, J. R. (1989) Natural selection for extended longevity from food restriction, Growth Dev. Aging, 53,3.PubMedGoogle Scholar
  63. 64.
    Kirkwood, T. (1977) Evolution of aging, Nature, 270, 301–304.CrossRefPubMedGoogle Scholar
  64. 65.
    Shanley, D. P., and Kirkwood, T. B. (2000) Calorie restriction and aging: a life–history analysis, Evol. Int. J. Org. Evol., 54, 740–750.CrossRefGoogle Scholar
  65. 66.
    Reimers, C. D., Knapp, G., and Reimers, A. K. (2012) Does physical activity increase life expectancy? A review of the literature, J. Aging Res., 2012, Article ID 243958.Google Scholar
  66. 67.
    Holloszy, J. O. (1993) Exercise increases average longevity of female rats despite increased food intake and no growth retardation, J. Gerontol., 48, 97–100.CrossRefGoogle Scholar
  67. 68.
    Bronikowski, A. M., Carter, P. A., Morgan, T. J., Garland, T., Jr., Ung, N., Pugh, T. D., Weindruch, R., and Prolla, T. A. (2003) Lifelong voluntary exercise in the mouse prevents age–related alterations in gene expression in the heart, Physiol. Genomics, 12, 129–138.CrossRefPubMedGoogle Scholar
  68. 69.
    Ristow, M., Zarse, K., Oberbach, A., Kloting, N., Birringer, M., Kiehntopf, M., Stumvoll, M., Kahn, C. R., and Bluher, M. (2009) Antioxidants prevent health–promoting effects of physical exercise in humans, Proc. Natl. Acad. Sci. USA, 106, 8665–8670.CrossRefPubMedGoogle Scholar
  69. 70.
    Johnson, T. E. (1990) Increased life–span of age–1 mutants in Caenorhabditis elegans and lower gompertz rate of aging, Science, 249, 908–912.CrossRefPubMedGoogle Scholar
  70. 71.
    Johnson, T. E., Tedesco, P. M., and Lithgow, G. J. (1993) Comparing mutants, selective breeding, and transgenics in the dissection of aging processes of Caenorhabditis elegans, Genetica, 91, 65–77.PubMedGoogle Scholar
  71. 72.
    Kenyon, C. (2005) The plasticity of aging: insights from long–lived mutants, Cell, 120, 449–460.CrossRefPubMedGoogle Scholar
  72. 73.
    Jenkins, N. L., McColl, G., and Lithgow, G. J. (2004) Fitness cost of extended lifespan in Caenorhabditis elegans, Proc. Biol. Sci., 271, 2523–2526.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 74.
    Mattison, J., Wright, C., Bronson, R. T., Roth, G. S., Ingram, D. K., and Bartke, A. (2000) Studies of aging in ames dwarf mice: effects of caloric restriction, J. Am. Aging Assoc., 23, 9–16.PubMedPubMedCentralGoogle Scholar
  74. 75.
    Bartke, A., Wright, J. C., Mabtison, J. A., Ingram, D. K., Miller, R. A., and Roth, G. S. (2001) Longevity: extending the lifespan of long–lived mice, Nature, 414,412.CrossRefPubMedGoogle Scholar
  75. 76.
    Rogina, B., Helfand, S., and Frankel, S. L. (2002) Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction, Science, 298, 1745.CrossRefPubMedGoogle Scholar
  76. 77.
    Tissenbaum, H. A., and Guarente, L. J. N. (2001) Increased dosage of a sir–2 gene extends lifespan in Caenorhabditis elegans, Nature, 410, 227–230.CrossRefPubMedGoogle Scholar
  77. 78.
    Van Raamsdonk, J. M., and Hekimi, S. (2009) Deletion of the mitochondrial superoxide dismutase sod–2 extends lifespan in Caenorhabditis elegans, PLoS Genet., 5, e1000361.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 79.
    Arantes–Oliveira, N., Berman, J. R., and Kenyon, M. C. (2003) Healthy animals with extreme longevity, Science, 302,611.CrossRefPubMedGoogle Scholar
  79. 80.
    Trubitsyn, A. (2006) Evolutionary mechanisms of species–specific lifespan, Adv. Gerontol., 19, 13–24.PubMedGoogle Scholar
  80. 81.
    Gilpin, M. E. (1975) Group Selection in Predator–Prey Communities, Monographs in Population Biology, Vol. 9, Princeton University Press, Princeton.Google Scholar
  81. 82.
    Jones, O. R., Scheuerlein, A., Salguero–Gomez, R., and Camarda, C. G. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 83.
    Harper, J. L. (2010) Population Biology of Plants, Blackburn Press.Google Scholar
  83. 84.
    Slobodkin, L. B. (1968) How to be a predator, Am. Zool., 8, 43–51.CrossRefGoogle Scholar
  84. 85.
    Benton, T., and Grant, A. (2000) Evolutionary fitness in ecology: comparing measures of fitness in stochastic, density–dependent environments, Evol. Ecol. Res., 2, 769–789.Google Scholar
  85. 86.
    Mitteldorf, J., and Pepper, J. (2009) Senescence as an adaptation to limit the spread of disease, J. Theor. Biol., 260, 186–195.CrossRefPubMedGoogle Scholar
  86. 87.
    Socolar, J., Richards, S., and Wilson, W. G. (2001) Evolution in a spatially structured population subject to rare epidemics, Phys. Rev., 63, 1–8.Google Scholar
  87. 88.
    Bryant, M. J., and Reznick, D. (2004) Comparative studies of senescence in natural populations of guppies, Am. Nat., 163, 55–68.CrossRefPubMedGoogle Scholar
  88. 89.
    Reznick, D., Nunney, L., and Tessier, A. (2000) Big houses, big cars, superfleas and the costs of reproduction, Trends Ecol. Evol., 15, 421–425.CrossRefGoogle Scholar
  89. 90.
    Spitze, K. (1991) Chaoborus predation and life history evolution in Daphnia pulex: temporal pattern of population diversity, fitness, and mean life history, Evolution, 45, 82–92.Google Scholar
  90. 91.
    Mitteldorf, J. (2012) Adaptive aging in the context of evolutionary theory, Biochemistry (Moscow), 77, 716–725.CrossRefGoogle Scholar
  91. 92.
    Mitteldorf, J., and Pepper, J. (2007) How can evolutionary theory accommodate recent empirical results on organismal senescence? Theory Biosci., 126, 3–8.CrossRefPubMedGoogle Scholar
  92. 93.
    Goranson, N., Ebersole, J., and Brault, S. (2005) Resolving an adaptive conundrum: reproduction in Caenorhabditis elegans is not sperm–limited when food is scarce, Evol. Ecol. Res., 7, 325–333.Google Scholar
  93. 94.
    Lack, D. J. (1947) The significance of clutch size, Ibis, 89, 302–352.CrossRefGoogle Scholar
  94. 95.
    Ydenberg, R., and Bertram, D. (1989) Lack’s clutch size hypothesis and brood enlargement studies on colonial seabirds, Colonial Waterbirds, 12, 134–137.CrossRefGoogle Scholar
  95. 96.
    Charlesworth, B. (1980) The cost of sex in relation to mating system, J. Theor. Biol., 84, 655–671.CrossRefPubMedGoogle Scholar
  96. 97.
    Williams, G. (1975) Sex and Evolution, Princeton University Press, Princeton, NJ.Google Scholar
  97. 98.
    Bell, G. (1982) The Masterpiece of Nature: the Evolution and Genetics of Sexuality, University of California Press, Berkeley.Google Scholar
  98. 99.
    Maynard Smith, J. (1978) The Evolution of Sex, Cambridge University Press, Cambridge, UK.Google Scholar
  99. 100.
    Ridley, M. (1993) The Red Queen, Penguin, London.Google Scholar
  100. 101.
    Villeda, S. A., Plambeck, K. E., Middeldorp, J., Castellano, J. M., Mosher, K. I., Luo, J., Smith, L. K., Bieri, G., Lin, K., Berdnik, D., Wabl, R., Udeochu, J., Wheatley, E. D., Zou, B., Simmons, D. A., Xie, X. S., Longo, F. M., and Wyss–Coray, T. (2014) Young blood reverses age–related impairments in cognitive function and synaptic plasticity in mice, Nat. Med., 20, 659–663.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 102.
    Conboy, I., Wagers, A. J., Girma, E. R., Irving, L., Weissman, I. L., and Thomas, A. (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment, Nature, 433, 760–764.CrossRefPubMedGoogle Scholar
  102. 103.
    Elabd, C., Cosin, W., Upadhyayula, P., Chen, R. Y., Chooljian, M. S., Li, J., Kung, S., Jiang, K. P., and Couboy, I. M. (2014) Oxytocin is an age–specific circulating hormone that is necessary for muscle maintenance and regeneration, Nat. Comm., 5, 1–11.CrossRefGoogle Scholar
  103. 104.
    Ruckh, J. M., Zhao, J. W., Shadrach, J. L., van Wijngaarden, P., Rao, T. N., Wagers, T. N., and Franklin, R. J. (2012) Rejuvenation of regeneration in the aging central nervous system, Cell Stem Cell, 10, 96–103.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 105.
    Zhang, G., Li, J., Purkayastha, S., Tang, Y., Zhang, H., Yin, Y., Li, B., Liu, G., and Cai, D. (2013) Hypothalamic programming of systemic ageing involving IKK–[bgr], NF–[kgr]B and GnRH, Nature, 497, 211–216.Google Scholar
  105. 106.
    Carlson, M. E., Conboy, M. J., Hsu, M., Barchas, L., Jeong, J., Agrawal, A., Mikels, A. J., Agrawal, S., Schaffer, D. V., and Conboy, I. M. (2009) Relative roles of TGF–β1 and Wnt in the systemic regulation and aging of satellite cell responses, Aging Cell, 8, 676–689.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 107.
    Merry, B. J., and Holehan, A. M. (1981) Serum profiles of LH, FSH, testosterone and 5 alpha–DHT from 21 to 1000 days of age in ad libitum fed and dietary restricted rats, Exp. Gerontol., 16, 431–444.PubMedGoogle Scholar
  107. 108.
    Peltoketo, H., Strauss, L., Karjalainen, R., Zhang, M., Stamp, G., Segaloff, D., Poutanen, M., and Huhtaniemi, I. (2010) Female mice expressing constitutively active FSH receptor present with a phenotype of premature follicle depletion, premature aging and teratomas, Endocr. Abs., 21,326.Google Scholar
  108. 109.
    Burger, H. G., Dudley, E. C., Robertson, D. M., and Denntrstein, L. (2002) Hormonal changes in the menopause transition, Recent Prog. Horm. Res., 7, 257–276.CrossRefGoogle Scholar
  109. 110.
    Kulju, K. S., and Lehman, J. M. (1995) Increased p53 protein associated with aging in human diploid fibroblasts, Exp. Cell Res., 217, 336–345.CrossRefPubMedGoogle Scholar
  110. 111.
    Donehower, L. (2002) Does p53 affect organismal aging? J. Cell. Physiol., 192, 23–33.CrossRefPubMedGoogle Scholar
  111. 112.
    Dorszewska, J., and Adamczewska–Goncerzewicz, Z. (2004) Oxidative damage to DNA, p53 gene expression and p53 protein level in the process of aging in rat brain, Respir. Physiol. Neurobiol., 139, 227–236.PubMedGoogle Scholar
  112. 113.
    Anisimov, V. N., Popovich, I. G., Zabezhinski, M. A., Anisimov, S. V., Vesnushkin, G. M., and Vinogradova, I. A. (2006) Melatonin as antioxidant, geroprotector and anticarcinogen, Biochim. Biophys. Acta, 1757, 573–589.CrossRefPubMedGoogle Scholar
  113. 114.
    Sharman, E. H., Bondy, S. C., Sharman, K. G., Lahiri, D., Cotman, C. W., and Perreau, V. M. (2007) Effects of melatonin and age on gene expression in mouse CNS using microarray analysis, Neurochem. Int., 50, 336–344.CrossRefPubMedGoogle Scholar
  114. 115.
    Aveleira, C. A., Botelho, M., and Cavadas, C. (2015) NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging? Autophagy, 11, 1431–1433.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 116.
    Medawar, P. B. (1952) An Unsolved Problem of Biology, Published for the college by H. K. Lewis, London.Google Scholar
  116. 117.
    Edney, E. B., and Gill, R. W. (1968) Evolution of senescence and specific longevity, Nature, 220, 281–282.CrossRefPubMedGoogle Scholar
  117. 118.
    Bonduriansky, R., and Brassil, C. E. (2002) Senescence: rapid and costly ageing in wild male flies, Nature, 420,377.CrossRefPubMedGoogle Scholar
  118. 119.
    Promislow, D. E. (1991) Senescence in natural populations of mammals: a comparative study, Evolution, 45, 1869–1887.CrossRefPubMedGoogle Scholar
  119. 120.
    Ricklefs, R. (1998) Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span, Am. Nat., 152, 24–44.PubMedGoogle Scholar
  120. 121.
    Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M., and Austad, S. N. (2012) Senescence in natural populations of animals: widespread evidence and its implications for bio–gerontology, Ageing Res. Rev., 12, 214–225.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.National Institute of Biological SciencesBeijingChina

Personalised recommendations