Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 12–13, pp 1489–1503 | Cite as

Ants as Object of Gerontological Research

  • G. A. ShilovskyEmail author
  • T. S. Putyatina
  • V. V. Ashapkin
  • A. A. Rozina
  • V. A. Lyubetsky
  • E. P. Minina
  • I. B. Bychkovskaia
  • A. V. Markov
  • V. P. Skulachev
Review
  • 5 Downloads

Abstract

Social insects with identical genotype that form castes with radically different lifespans are a promising model system for studying the mechanisms underlying longevity. The main direction of progressive evolution of social insects, in particular, ants, is the development of the social way of life inextricably linked with the increase in the colony size. Only in a large colony, it is possible to have a developed polyethism, create large food reserves, and actively regulate the nest micro–climate. The lifespan of ants hugely varies among genetically similar queens, workers (unproductive females), and males. The main advantage of studies on insects is the determinism of ontogenetic processes, with a single genome leading to completely different lifespans in different castes. This high degree of determinacy is precisely the reason why some researchers (incorrectly) call a colony of ants the “superorganism”, emphasizing the fact that during the development, depending on the community needs, ants can switch their ontogenetic programs, which influences their social roles, ability to learn (i.e., the brain [mushroom–like body] plasticity), and, respectively, the spectrum of tasks performed by a given individual. It has been shown that in many types of food behavior, older ants surpass young ones in both performing the tasks and transferring the experience. The balance between the need to reduce the “cost” of non–breeding individuals (short lifespan and small size of workers) and the benefit from experienced long–lived workers possessing useful skills (large size and “non–aging”) apparently determines the differences in the lifespan and aging rate of workers in different species of ants. A large spectrum of rigidly determined ontogenetic trajectories in different castes with identical genomes and the possibility of comparison between “evolutionarily advanced” and “primitive” subfamilies (e.g., Formicinae and Ponerinae) make ants an attractive object in the studies of both normal aging and effects of anti–aging drugs.

Keywords

lifespan aging ants biological evolution phenoptosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comfort, A. (1979) The Biology of Senescence, Churchill Livingstone, Edinburgh–London.Google Scholar
  2. 2.
    Finch, C. E. (1990) Longevity, Senescence and the Genome, University Chicago Press, Chicago.Google Scholar
  3. 3.
    Medawar, P. B. (1952) An Unsolved Problem of Biology, H. K. Lewis, London.Google Scholar
  4. 4.
    Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence, Evolution, 11, 398–411.Google Scholar
  5. 5.
    Kirkwood, T. B. L. (1977) Evolution of ageing, Nature, 270, 301–304.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jemielity, S., Chapuisat, M., Parker, J. D., and Keller, L. (2005) Long live the queen: studying aging in social insects, Age (Dordr.), 27, 241–248.CrossRefGoogle Scholar
  7. 7.
    Heinze, J., and Schrempf, A. (2008) Aging and reproduction in social insects–a mini–review, Gerontology, 54, 160–167.CrossRefPubMedGoogle Scholar
  8. 8.
    Jones, O. R., Scheuerlein, A., Salguero–Gomez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlen, J., Garcia, M. B., Menges, E. S., Quintana–Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.Google Scholar
  10. 10.
    Skulachev, M. V., and Skulachev, V. P. (2014) New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.CrossRefGoogle Scholar
  11. 11.
    Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2015) Aging as an evolvability–increasing program which can be switched off by organism to mobilize additional resources for survival, Curr. Aging Sci., 8, 95–109.CrossRefPubMedGoogle Scholar
  12. 12.
    Markov, A. V. (2012) Can kin selection facilitate the evolution of the genetic program of senescence? Biochemistry (Moscow), 77, 733–337.CrossRefGoogle Scholar
  13. 13.
    Chistyakov, V. A., and Denisenko, Y. V. (2015) Aging saves populations from extinction under lack of resources: in silico experiments, Biochemistry (Moscow), 80, 636–639.CrossRefGoogle Scholar
  14. 14.
    Chistyakov, V. A., Denisenko, Y. V., and Bren, A. B. (2018) Presence of old individuals in a population accelerates and optimizes the process of selection: in silico experiments, Biochemistry (Moscow), 83, 159–167.CrossRefGoogle Scholar
  15. 15.
    Markov, A. V., Barg, M. A., and Yakovleva, E. U. (2018) Can aging develop as an adaptation to optimize natural selection? (Application of computer modeling for searching some conditions, when the “Fable about hares” is possible to explain the evolution of aging), Biochemistry (Moscow), 83, 1504–1516.CrossRefGoogle Scholar
  16. 16.
    Kirkwood, T. B. L. (2010) Systems biology of ageing and longevity, Phil. Trans. R. Soc. B, 366, 64–70.CrossRefGoogle Scholar
  17. 17.
    Brent, L. J., Franks, D. W., Foster, E. A., Balcomb, K. C., Cant, M. A., and Croft, D. P. (2015) Ecological knowledge, leadership, and the evolution of menopause in killer whales, Curr. Biol., 25, 746–750.PubMedGoogle Scholar
  18. 18.
    Nusbaum, N. J. (1996) What good is it to get old? Med. Hypotheses, 47, 77–79.CrossRefPubMedGoogle Scholar
  19. 19.
    Keller, L., and Jemielity, S. (2006) Social insects as a model to study the molecular basis of ageing, Exp. Gerontol., 41, 553–556.CrossRefPubMedGoogle Scholar
  20. 20.
    Cohen, A. A. (2017) Aging across the tree of life: the importance of a comparative perspective for the use of animal models in aging, Biochim. Biophys. Acta, 1864, 2680–2689.CrossRefGoogle Scholar
  21. 21.
    Gavrilov, L. A., and Gavrilova, N. S. (1991) The Biology of Life Span: A Quantitative Approach, Harwood Academic Publisher, New York.Google Scholar
  22. 22.
    Bychkovskaia, I. B., Mylnikov, S. V., and Mozhaev, G. A. (2016) Discontinuity of the annuity curves. III. Two types of vital variability in Drosophila melanogaster, Adv. Gerontol., 29, 541–547.PubMedGoogle Scholar
  23. 23.
    De Magalhaes, J. P., Costa, J., and Church, G. M. (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts, J. Gerontol. A Biol. Sci. Med. Sci., 62, 149–160.PubMedGoogle Scholar
  24. 25.
    Shilovsky, G. A., Putyatina, T. S., Markov, A. V., and Skulachev, V. P. (2015) Contribution of quantitative methods of estimating mortality dynamics to explaining mechanisms of aging, Biochemistry (Moscow), 80, 1547–1559.CrossRefGoogle Scholar
  25. 26.
    Terres, J. (1980) The Audubon Society Encyclopedia of North American Birds, Knopf, New York.Google Scholar
  26. 27.
    Morgan, C. C., Mc Cartney, A. M., Donoghue, M. T. A., Loughran, N. B., Spillane, C., Teeling, E. C., and O’Connell, M. J. (2013) Molecular adaptation of telomere associated genes in mammals, BMC Evol. Biol., 13,251.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 28.
    Andziak, B., O’Connor, T. P., and Buffenstein, R. (2005) Antioxidants do not explain the disparate longevity between mice and the longest–living rodent, the naked mole–rat, Mech. Ageing Dev., 126, 1206–1212.CrossRefPubMedGoogle Scholar
  28. 29.
    Andziak, B., O’Connor, T. P., Qi, W., DeWaal, E. M., Pierce, A., Chaudhuri, A. R., Van Remmen, H., and Buffenstein, R. (2006) High oxidative damage levels in the longest–living rodent, the naked mole–rat, Aging Cell, 5, 463–471.CrossRefPubMedGoogle Scholar
  29. 30.
    Baudisch, A., and Vaupel, J. (2010) Senescence vs. sustenance: evolutionary–demographic models of aging, Demogr. Res., 23, 655–668.CrossRefGoogle Scholar
  30. 31.
    De Loof, A. (2011) Longevity and aging in insects: is reproduction costly; cheap; beneficial or irrelevant? A critical evaluation of the “trade–off” concept, J. Insect Physiol., 57, 1–11.CrossRefPubMedGoogle Scholar
  31. 32.
    Buffenstein, R. (2008) Negligible senescence in the longest living rodent, the naked mole–rat: insights from a successfully aging species, J. Comp. Physiol. B, 178, 439–445.PubMedGoogle Scholar
  32. 33.
    Burger, O., Baudisch, A., and Vaupel, J. W. (2012) Human mortality improvement in evolutionary context, Proc. Natl. Acad. Sci. USA, 109, 18210–18214.CrossRefPubMedGoogle Scholar
  33. 34.
    Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Markov, A. V., Hildebrandt, T. B., and Sadovnichii, V. (2017) Neoteny, prolongation of youth: from naked mole rats to “naked apes” (humans), Physiol. Rev., 97, 699–720.PubMedGoogle Scholar
  34. 35.
    Haddad, L. S., Kelbert, L., and Hulbert, A. J. (2007) Extended longevity of queen honey bees compared to workers is associated with peroxidation–resistant membranes, Exp. Gerontol., 42, 601–609.CrossRefPubMedGoogle Scholar
  35. 36.
    Holldobler, B., and Wilson, E. O. (1990) The Ants, The Belknap Press of Harvard University Press, Cambridge.CrossRefGoogle Scholar
  36. 37.
    Schultz, T. R. (2000) In search of ant ancestors, Proc. Natl. Acad. Sci. USA, 97, 14028–14029.CrossRefPubMedGoogle Scholar
  37. 38.
    Zakharov, A. A. (2015) Ants of Forest Communities, Their Life and Role in the Forest [in Russian], Tovarishchestvo Nauchnykh Publikatsii KMK, Moscow.Google Scholar
  38. 39.
    Zakharov, A. A. (1978) Ant, Family, Colony [in Russian], Nauka, Moscow.Google Scholar
  39. 40.
    Crespi, B. (2014) The insectan apes, Hum. Nat., 25, 6–27.CrossRefPubMedGoogle Scholar
  40. 41.
    Crespi, B. J. (2016) The convergent and divergent evolution of social–behavioral economics, Behav. Brain Sci., 39, e96.CrossRefPubMedGoogle Scholar
  41. 42.
    Reznikova, Zh. I., and Ryabko, B. Y. (1995) Transmission of information on the quantitative characteristics of an object in ants, Zh. Vyssh. Nervn. Deyat., 45, 500–509.Google Scholar
  42. 43.
    Currie, C. C., Poulsen, M., Mendenhall, J., Boomsma, J., and Billen, J. (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus–growing ants, Science, 311, 81–83.CrossRefPubMedGoogle Scholar
  43. 44.
    Keller, L., and Genoud, M. (1997) Extraordinary lifespan in ants: a test of evolutionary theories of ageing, Nature, 389, 958–960.CrossRefGoogle Scholar
  44. 45.
    Gosswald, K. (1989) Die Waldameise. Band: Biologische Grundlagen, Okologie und Verhalten, Aula–Verlag, Wiesbaden.Google Scholar
  45. 46.
    Bier, K. H. (1958) Die Bedeutung der Jungarbeiterinnen fbr die Geschlechtstieraufzucht im Ameisenstaat, Biol. Zentralbl., 77, 257–265.Google Scholar
  46. 47.
    Dlussky, G. M. (1967) Ants of the Genus Formica [in Russian], Nauka, Moscow.Google Scholar
  47. 48.
    Vaiserman, A. (2014) Developmental epigenetic programming of caste–specific differences in social insects: an impact on longevity, Curr. Aging Sci., 7, 176–186.CrossRefPubMedGoogle Scholar
  48. 49.
    Capella, I. C., and Hartfelder, K. (1998) Juvenile hormone effect on DNA synthesis and apoptosis in caste–specific differentiation of the larval honey bee (Apis mellifera L.) ovary, J. Insect. Physiol., 44, 385–391.CrossRefPubMedGoogle Scholar
  49. 50.
    Azevedo, D. O., Zanuncio, J. C., Delabie, J. H., and Serrao, J. E. (2011) Temporal variation of vitellogenin synthesis in Ectatomma tuberculatum (Formicidae: Ectatomminae) workers, J. Insect. Physiol., 57, 972–977.CrossRefPubMedGoogle Scholar
  50. 51.
    Ichinose, K., and Lenoir, A. (2009) Ontogeny of hydrocarbon profiles in the ant Aphaenogaster senilis and effects of social isolation, C. R. Biol., 332, 697–703.CrossRefPubMedGoogle Scholar
  51. 52.
    Kutter, H. (1977) Hymenoptera–Formicidae, in Fauna Insecta Helvetica (Sauter, W., ed.), Vol. 6, Schweizerische Entomologische Gesellschaft, Zurich.Google Scholar
  52. 53.
    Prescott, H. W. (1973) Longevity of Lasius flavus (F.) (Hym. Formicidae): a sequel, Entomol. Mon. Mag., 109,124.Google Scholar
  53. 54.
    Janet, C. (1904) Observations sur les Fourmis, Imprimerie Ducourtieux et Gout, Limoges.Google Scholar
  54. 55.
    Vonshak, M., and Shlagman, A. (2009) A Camponotus fellah queen sets a record for Israeli ant longevity, Isr. J. Entomol., 39, 165–169.Google Scholar
  55. 56.
    Haskins, C. P., and Haskins, E. F. (1992) Note on extraordinary longevity in a queen of the formicine ant genus Camponotus, Psyche, 90, 163–174.CrossRefGoogle Scholar
  56. 57.
    Pamilo, P. (1991) Life span of queens in the ant Formica exsecta, Insectes Soc., 38, 111–119.CrossRefGoogle Scholar
  57. 58.
    Horstmann, K. (1983) Uber die mittlere Lebensdauer von Waldameisen–Koniginnen der Art, Formica polyctena Forster (Formicidae), Waldhygiene, 15, 15–20.Google Scholar
  58. 59.
    Porter, S. D., and Jorgensen, C. D. (1988) Longevity of harvester ant colonies in southern Idaho, J. Range. Manag., 41, 104–107.CrossRefGoogle Scholar
  59. 60.
    Gordon, D. M. (1991) Behavioral flexibility and the foraging ecology of seed–eating ant, Am. Nat., 138, 379–411.CrossRefGoogle Scholar
  60. 61.
    Casevitz–Weulersse, J. (1991) Reproduction et developpement des societes de Crematogaster scutellaris (Olivier, 1791) (Hymenoptera: Formicidae), Ann. Soc. Entomol. Fr., 27, 103–111.Google Scholar
  61. 62.
    Buschinger, A. (1974) Experimente und Beobachtungen zur Grundung und Entwicklung neuer Sozietaten der Sklavenhaltenden Ameise Harpagoxenus sublaevis (Nyl.), Insectes Soc., 21, 381–406.CrossRefGoogle Scholar
  62. 63.
    Bourke, A. F. G., van der Have, T. M., and Franks, N. R. (1988) Sex ratio determination and worker reproduction in the slave–making ant Harpagoxenus sublaevis, Behav. Ecol. Sociobiol., 23, 333–345.Google Scholar
  63. 64.
    Heinze, J., and Trenkle, S. (1997) Male polymorphism and gynandromorphs in the ant Cardiocondyla emeryi, Naturwissenschaften, 84, 129–131.CrossRefGoogle Scholar
  64. 65.
    Donisthorpe, H. J. K. (1936) The oldest insect on record, Entomol. Rec. J. Var., 48, 1–2.Google Scholar
  65. 66.
    Plateaux, L. (1986) Comparaison des cycles saisonniers, des durees des societes et des productions des trois espices de fourmis Leptothorax du groupe Nylanderi, Actes Coll. Ins. Soc., 3, 221–234.Google Scholar
  66. 67.
    Keller, L. (1998) Queen lifespan and colony characteristics in ants and termites, Insectes Soc., 45, 235–246.CrossRefGoogle Scholar
  67. 68.
    Autuori, M. (1950) Longevididade de uma colonia de sava (Atta sexdens rubropilosa Forel, 1908) em condizoes de laboratyrio, Cikncia e Cultura, 2, 285–286.Google Scholar
  68. 69.
    Weber, N. A. (1976) A ten–year colony of Sericomyrmex urichi (Hymenoptera, Formicidae), Ann. Entomol. Soc., 69, 815–819.CrossRefGoogle Scholar
  69. 70.
    Ulloa–Chacyn, P., and Cherix, D. (1989) Etude de quelques facteurs influenzant la fecondite des reines de Wasmannia auropunctata (R.) (Hymenoptera, Formicidae), Actes Coll. Insectes Soc., 5, 121–129.Google Scholar
  70. 71.
    Haskins, C. P. (1960) Note on the natural longevity of fertile female of Aphaenogaster picea, J. N. Y. Entomol. Soc., 68, 66–67.Google Scholar
  71. 72.
    Tohme, G., and Tohme, H. (1978) Accroissement de la societe et longevite de la reine et des ouvrieres chez Messor semirufus (Andre) (Hym. Formicoidea), C. R. Acad. Sc. Paris, 286, 961–963.Google Scholar
  72. 73.
    Tschinkel, W. R. (1987) Fire ant queen longevity and age: estimation by sperm depletion, Ann. Entomol. Soc., 80, 263–266.CrossRefGoogle Scholar
  73. 74.
    Peacock, A. D., and Baxter, A. T. (1950) Studies in Pharaoh’s ant Monomorium pharaonis (L.). 3. Life history, Entomol. Mon. Mag., 86, 171–178.Google Scholar
  74. 75.
    Haskins, C. P., and Haskins, E. F. (1980) Notes on female and worker survivorship in the archaic ant genus Camponotus, Insectes Soc., 27, 345–350.CrossRefGoogle Scholar
  75. 76.
    Hartmann, A., and Heinze, J. (2003) Lay eggs, live longer: division of labor and life span in a clonal ant species, Evolution, 57, 2424–2429.Google Scholar
  76. 77.
    Tsuji, K., Nakata, K., and Heinze, J. (1996) Lifespan and reproduction in a queenless ant, Naturwissenschaften, 83, 577–578.CrossRefGoogle Scholar
  77. 78.
    Seppa, P. (1994) Sociogenetic organization of the ants Myrmica ruginodis and Myrmica lobicornis: number, relatedness and longevity of reproducing individuals, J. Evol. Biol., 7, 71–95.Google Scholar
  78. 79.
    Elmes, G. W., and Petal, J. (1990) Queen number as an adaptable trait: evidence from wild populations of two red ant species (genus Myrmica), J. Anim. Ecol., 59, 675–690.CrossRefGoogle Scholar
  79. 80.
    Terron, G. (1977) Evolution des colonies de Tetraponera anthracina Santschi (Formicidae, Pseudomyrmecinae) avec reines, Bull. Biol. Fr. Belg., 61, 115–181.Google Scholar
  80. 81.
    Keller, L., Passera, L., and Suzzoni, J. P. (1989) Queen execution in the Argentine ant Iridomyrmex humilis (Mayr), Physiol. Entomol., 14, 157–163.CrossRefGoogle Scholar
  81. 82.
    Smith, M. R. (1928) The biology of Tapinoma sessile say, an important house–infesting ant, Ann. Entomol. Soc. Am., 21, 307–330.CrossRefGoogle Scholar
  82. 83.
    Keller, L., and Reeve, H. K. (1994) Genetic variability, queen number, and polyandry in social Hymenoptera, Evolution, 38, 694–704.Google Scholar
  83. 84.
    Bartz, S. H., and Holldobler, B. (1982) Colony founding in Myrmecocystus mimicus Wheeler (Hymenoptera, Formicidae) and the evolution of foundress associations, Behav. Ecol. Sociobiol., 10, 137–147.CrossRefGoogle Scholar
  84. 85.
    Provost, E. (1985) A study on the closure of ant societies: I. Analysis of interactions involved in experimental encounters between worker ants of the same species genus (Leptothorax or Camponotus lateralis) but from different societies, Insectes Soc., 32, 445–462.CrossRefGoogle Scholar
  85. 86.
    Rosengren, R., Sundstrom, L., and Fortelius, W. (1993) Monogyny and polygyny in Formica ants: the result of alternative dispersal tactics? in Queen Number and Sociality in Insects (Keller, L., ed.) Oxford University Press, Oxford.Google Scholar
  86. 87.
    Bernard, F. (1968) Les Fourmis d’Europe Occidentale et Septentrionale, Masson et Cie, Paris.Google Scholar
  87. 88.
    Wilson, E. O. (1985) The sociogenesis of insect colonies, Science, 228, 1489–1495.CrossRefPubMedGoogle Scholar
  88. 89.
    Nonacs, P. (1986) Ant reproductive strategies and sex allocation theory, Q. Rev. Biol., 61, 1–21.CrossRefGoogle Scholar
  89. 90.
    Lubertazzi, D. (2012) The biology and natural history of Aphaenogaster rudis, Psyche, 2012, 752815.Google Scholar
  90. 91.
    Corbara, B., Lachaud, J. P., and Fresneau, D. (1989) Individual variability, social structure and division of labour in the Ponerine ant Ectatomma ruidum Roger (Hymenoptera, Formicidae), Ethology, 82, 89–100.Google Scholar
  91. 92.
    Ross, K. G., and Keller, L. (1995) Ecology and evolution of social organization–insights from fire ants and other high–ly eusocial insects, Ann. Rev. Ecol. Syst., 26, 631–656.CrossRefGoogle Scholar
  92. 93.
    Peacock, A. D., Sudd, J. H., and Baxter, A. T. (1955) Studies in Pharaoh’s ant Monomorium pharaonis (L.). II. Colony foundation, Entomol. Mon. Mag., 91, 125–129.Google Scholar
  93. 94.
    Harada, A. Y. (1990) Ant pests of the Tapinomini tribe, in Applied Myrmecology: A World Perspective (Vander Meer, R. K., Jaffe, K., and Cedeno, A., eds.), Westview Press, Boulder.Google Scholar
  94. 95.
    Keller, L. (1993) Queen Number and Sociality in Insects, Oxford University Press, Oxford.Google Scholar
  95. 96.
    Giraldo, Y. M., Kamhi, J. F., Fourcassie, V., Moreau, M., Robson, S. K., Rusakov, A., Wimberly, L., Diloreto, A., Kordek, A., and Traniello, J. F. (2016) Lifespan behavioural and neural resilience in a social insect, Proc. Biol. Sci., 283, 20152603.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 97.
    Haight, K. L. (2012) Patterns of venom production and temporal polyethism in workers of Jerdon’s jumping ant, Harpegnathos saltator, J. Insect Physiol., 58, 1568–1574.CrossRefPubMedGoogle Scholar
  97. 98.
    Boomsma, J. J., Baer, B., and Heinze, J. (2005) The evolution of male traits in social insects, Annu. Rev. Entomol., 50, 395–420.CrossRefPubMedGoogle Scholar
  98. 99.
    Carey, J. R. (2001) Demographic mechanisms for the evolution of long life in social insects, Exp. Gerontol., 36, 713–722.CrossRefPubMedGoogle Scholar
  99. 100.
    Le Bourg, E. (1998) Evolutionary theories of aging: handle with care, Gerontology, 44, 345–348.CrossRefPubMedGoogle Scholar
  100. 101.
    Keller, L., and Genoud, M. (1999) Evolutionary theories of aging. 1. The need to understand the process of natural selection, Gerontology, 45, 336–338.CrossRefPubMedGoogle Scholar
  101. 102.
    Schrempf, A., and Heinze, J. (2007) Back to one: consequences of derived monogyny in an ant with polygynous ancestors, J. Evol. Biol., 20, 792–799.CrossRefPubMedGoogle Scholar
  102. 103.
    Schrempf, A., Cremer, S., and Heinze, J. (2011) Social influence on age and reproduction: reduced lifespan and fecundity in multi–queen ant colonies, J. Evol. Biol., 24, 1455–1461.CrossRefPubMedGoogle Scholar
  103. 104.
    Kohlmeier, P., Negroni, M. A., Kever, M., Emmling, S., Stypa, H., Feldmeyer, B., and Foitzik, S. (2017) Intrinsic worker mortality depends on behavioral caste and the queens’ presence in a social insect, Naturwissenschaften, 104,34.CrossRefPubMedGoogle Scholar
  104. 105.
    Kramer, B. H., Schaible, R., and Scheuerlein, A. (2016) Worker lifespan is an adaptive trait during colony establishment in the long–lived ant Lasius niger, Exp. Gerontol., 85, 18–23.CrossRefPubMedGoogle Scholar
  105. 106.
    Dlussky, G. M. (1981) Ants of Deserts [in Russian], Nauka, Moscow.Google Scholar
  106. 107.
    Khalyavkin, A. V. (2001) Influence of environment on the mortality pattern of potentially non–senescent organisms. General approach and comparison with real populations, Adv. Gerontol., 7, 46–49.Google Scholar
  107. 108.
    Kramer, B. H., and Schaible, R. (2013) Life span evolution in eusocial workers–a theoretical approach to understanding the effects of extrinsic mortality in a hierarchical system, PLoS One, 8, e61813.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 109.
    Ulrich, Y., Saragosti, J., Tokita, C. K., Tarnita, C. E., and Kronauer, D. J. C. (2018) Fitness benefits and emergent division of labour at the onset of group living, Nature, 560, 635–638.CrossRefPubMedGoogle Scholar
  109. 110.
    Tsuji, K., Kikuta, N., and Kikuchi, T. (2012) Determination of the cost of worker reproduction via diminished life span in the ant Diacamma sp., Evolution, 66, 1322–1331.CrossRefPubMedGoogle Scholar
  110. 111.
    Franklin, E. L., Robinson, E. J., Marshall, J. A., Sendova–Franks, A. B., and Franks, N. R. (2012) Do ants need to be old and experienced to teach? J. Exp. Biol., 215, 1287–1292.CrossRefPubMedGoogle Scholar
  111. 112.
    Chapuisat, M., and Keller, L. (2002) Division of labour influences the rate of ageing in weaver ant workers, Proc. Biol. Sci., 269, 909–913.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 113.
    Moron, D., Lenda, M., Skorka, P., and Woyciechowski, M. (2012) Short–lived ants take greater risks during food collection, Am. Nat., 180, 744–750.CrossRefPubMedGoogle Scholar
  113. 114.
    Giraldo, Y. M., and Traniello, J. F. (2014) Worker senescence and the sociobiology of aging in ants, Behav. Ecol. Sociobiol., 68, 1901–1919.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 115.
    Bourke, A. F. G. (1999) Colony size, social complexity and reproductive conflict in social insects, J. Evol. Biol., 12, 245–257.Google Scholar
  115. 116.
    Ilies, I., Muscedere, M. L., and Traniello, J. F. (2015) Neuroanatomical and morphological trait clusters in the ant genus Pheidole: evidence for modularity and integration in brain structure, Brain Behav. Evol., 85, 63–76.CrossRefPubMedGoogle Scholar
  116. 117.
    Muscedere, M. L., and Traniello, J. F. (2012) Division of labor in the hyperdiverse ant genus Pheidole is associated with distinct subcaste–and age–related patterns of worker brain organization, PLoS One, 7, e31618.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Riveros, A. J., and Gronenberg, W. (2010) Brain allometry and neural plasticity in the bumblebee Bombus occidentalis, Brain Behav. Evol., 75, 138–148.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Seid, M. A., Harris, K. M., and Traniello, J. F. (2005) Age–related changes in the number and structure of synapses in the lip region of the mushroom bodies in the ant Pheidole dentata, J. Comp. Neurol., 488, 269–277.CrossRefPubMedGoogle Scholar
  119. 119.
    Seid, M. A., and Traniello, J. F. (2005) Age–related changes in biogenic amines in individual brains of the ant Pheidole dentata, Naturwissenschaften, 92, 198–201.CrossRefPubMedGoogle Scholar
  120. 120.
    Seid, M. A., Goode, K., Li, C., and Traniello, J. F. (2008) Age–and subcaste–related patterns of serotoninergic immunoreactivity in the optic lobes of the ant Pheidole dentata, Dev. Neurobiol., 68, 1325–1333.CrossRefPubMedGoogle Scholar
  121. 121.
    Brady, S. G., Schultz, T. R., Fisher, B. L., and Ward, P. S. (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants, Proc. Natl. Acad. Sci. USA, 103, 18172–18177.CrossRefPubMedGoogle Scholar
  122. 122.
    Feldmeyer, B., Elsner, D., and Foitzik, S. (2014) Gene expression patterns associated with caste and reproductive status in ants: worker–specific genes are more derived than queen–specific ones, Mol. Ecol., 23, 151–161.CrossRefPubMedGoogle Scholar
  123. 123.
    Graff, J., Jemielity, S., Parker, J. D., Parker, K. M., and Keller, L. (2007) Differential gene expression between adult queens and workers in the ant Lasius niger, Mol. Ecol., 16, 675–683.CrossRefPubMedGoogle Scholar
  124. 124.
    Feldmeyer, B., Mazur, J., Beros, S., Lerp, H., Binder, H., and Foitzik, S. (2016) Gene expression patterns underlying parasite–induced alterations in host behaviour and life history, Mol. Ecol., 25, 648–660.CrossRefPubMedGoogle Scholar
  125. 124.
    Lucas, E. R., Privman, E., and Keller, L. (2016) Higher expression of somatic repair genes in long–lived ant queens than workers, Aging (Albany NY), 8, 1940–1951.CrossRefGoogle Scholar
  126. 125.
    Horvath, S. (2013) DNA methylation age of human tissues and cell types, Genome Biol., 14, R115.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 126.
    Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., and Horvath, S. (2018) An epigenetic biomarker of aging for lifespan and healthspan, Aging (Albany NY), 10, 573–591.CrossRefGoogle Scholar
  128. 127.
    Bonasio, R., Li, Q., Lian, J. Mutti, N. S., Jin, L., Zhao, H., Zhang, P., Wen, P., Xiang, H., Ding, Y., Jin, Z., Shen, S. S., Wang, Z., Wang, W., Wang, J., Berger, S. L., Liebig, J., Zhang, G., and Reinberg, D. (2012) Genome–wide and caste–specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator, Curr. Biol., 22, 1755–1764.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 128.
    Bonasio, R., Zhang, G., Ye, C., Mutti, N. S., Fang, X., Qin, N., Donahue, G., Yang, P., Li, Q., Li, C., Zhang, P., Huang, Z., Berger, S. L., Reinberg, D., Wang, J., and Liebig, J. (2010) Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator, Science, 329, 1068–1071.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 129.
    Libbrecht, R., Oxley, P. O., Keller, L., and Kronauer, D. J. C. (2016) Robust DNA methylation in the clonal raider ant brain, Curr. Biol., 26, 391–395.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 130.
    Patel, A., Fondrk, M. K., Kaftanoglu, O., Emore, C., Hunt, G., Frederick, K., and Amdam, G. V. (2007) The making of a queen: TOR pathway is a key player in diphenic caste development, PLoS One, 2, e509.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 131.
    Wheeler, D. E., Buck, N., and Evans, J. D. (2006) Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera, Insect Mol. Biol., 15, 597–602.CrossRefPubMedGoogle Scholar
  133. 132.
    Wheeler, D. E., Buck, N. A., and Evans, J. D. (2014) Expression of insulin/insulin–like signalling and TOR pathway genes in honey bee caste determination, Insect Mol. Biol., 23, 113–121.CrossRefPubMedGoogle Scholar
  134. 133.
    Brian, M. V. (1980) Social control over sex and caste in bees, wasps and ants, Biol. Rev., 55, 379–415.CrossRefGoogle Scholar
  135. 134.
    Walker, R. F., Pakula, L. C., Sutcliffe, M. J., Kruk, P. A., Graakjaer, J., and Shay, J. W. (2009) A case study of “disorganized development” and its possible relevance to genetic determinants of aging, Mech. Ageing Dev., 130, 350–356.CrossRefPubMedGoogle Scholar
  136. 135.
    Walker, R. F. (2017) On the cause and mechanism of phenoptosis, Biochemistry (Moscow), 82, 1462–1479.CrossRefGoogle Scholar
  137. 136.
    Lecomte, V. J., Sorci, G., Cornet, S., Jaeger, A., Faivre, B., Arnoux, E., Gaillard, M., Trouve, C., Besson, D., Chastel, O., and Weimerskirch, H. (2010) Patterns of aging in the long–lived wandering albatross, Proc. Natl. Acad. Sci. USA, 107, 6370–6375.CrossRefPubMedGoogle Scholar
  138. 137.
    Negroni, M. A., Jongepier, E., Feldmeyer, B., Kramer, B. H., and Foitzik, S. (2016) Life history evolution in social insects: a female perspective, Curr. Opin. Insect Sci., 16, 51–57.CrossRefPubMedGoogle Scholar
  139. 138.
    Zhang, Y., and Hood, W. R. (2016) Current versus future reproduction and longevity: a re–evaluation of predictions and mechanisms, J. Exp. Biol., 219, 3177–3189.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • G. A. Shilovsky
    • 1
    • 2
    • 3
    Email author
  • T. S. Putyatina
    • 2
  • V. V. Ashapkin
    • 1
  • A. A. Rozina
    • 1
  • V. A. Lyubetsky
    • 3
  • E. P. Minina
    • 1
  • I. B. Bychkovskaia
    • 4
  • A. V. Markov
    • 2
  • V. P. Skulachev
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia
  4. 4.Nikiforov Center of Emergency and Radiation Medicine of the Russian Ministry of Emergency ControlSt. PetersburgRussia

Personalised recommendations