Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 12–13, pp 1459–1468 | Cite as

Common and Specific Functions of Nonmuscle Myosin II Paralogs in Cells

  • M. S. Shutova
  • T. M. SvitkinaEmail author
Review

Abstract

Various forms of cell motility critically depend on pushing, pulling, and resistance forces generated by the actin cytoskeleton. Whereas pushing forces largely depend on actin polymerization, pulling forces responsible for cell contractility and resistance forces maintaining the cell shape require interaction of actin filaments with the multivalent molecular motor myosin II. In contrast to muscle–specific myosin II paralogs, nonmuscle myosin II (NMII) functions in virtually all mammalian cells, where it executes numerous mechanical tasks. NMII is expressed in mammalian cells as a tissue–specific combination of three paralogs, NMIIA, NMIIB, and NMIIC. Despite overall similarity, these paralogs differ in their molecular properties, which allow them to play both unique and common roles. Importantly, the three paralogs can also cooperate with each other by mixing and matching their unique capabilities. Through specialization and cooperation, NMII paralogs together execute a great variety of tasks in many different cell types. Here, we focus on mammalian NMII paralogs and review novel aspects of their kinetics, regulation, and functions in cells from the perspective of how distinct features of the three myosin II paralogs adapt them to perform specialized and joint tasks in the cells.

Keywords

actin nonmuscle myosin II stress fibers cytoskeleton cell motility 

Abbreviations

ACD1(2)

assembly competence domain 1(2)

ECM

extracellular matrix

MRLC

myosin regulatory light chains

NMII

nonmuscle myosin II

SF

stress fibers

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ma, X., and Adelstein, R. S. (2014) The role of vertebrate nonmuscle myosin II in development and human disease, Bioarchitecture, 4, 88–102.Google Scholar
  2. 2.
    Burgess, S. A., Yu, S., Walker, M. L., Hawkins, R. J., Chalovich, J. M., and Knight, P. J. (2007) Structures of smooth muscle myosin and heavy meromyosin in the folded, shutdown state, J. Mol. Biol., 372, 1165–1178.Google Scholar
  3. 3.
    Heissler, S. M., and Sellers, J. R. (2016) Various themes of myosin regulation, J. Mol. Biol., 428, 1927–1946.Google Scholar
  4. 4.
    Melli, L., Billington, N., Sun, S. A., Bird, J. E., Nagy, A., Friedman, T. B., Takagi, Y., and Sellers, J. R. (2018) Bipolar filaments of human nonmuscle myosin 2–A and 2–B have distinct motile and mechanical properties, eLife, 7, e32871.Google Scholar
  5. 5.
    Heissler, S. M., and Manstein, D. J. (2013) Nonmuscle myosin–2: mix and match, Cell. Mol. Life Sci., 70, 1–21.Google Scholar
  6. 6.
    Heissler, S. M., and Sellers, J. R. (2016) Kinetic adaptations of myosins for their diverse cellular functions, Traffic, 17, 839–859.Google Scholar
  7. 7.
    Billington, N., Wang, A., Mao, J., Adelstein, R. S., and Sellers, J. R. (2013) Characterization of three full–length human nonmuscle myosin II paralogs, J. Biol. Chem., 288, 33398–33410.Google Scholar
  8. 8.
    Nakasawa, T., Takahashi, M., Matsuzawa, F., Aikawa, S., Togashi, Y., Saitoh, T., Yamagishi, A., and Yazawa, M. (2005) Critical regions for assembly of vertebrate nonmuscle myosin II, Biochemistry, 44, 174–183.Google Scholar
  9. 9.
    Beach, J. R., Shao, L., Remmert, K., Li, D., Betzig, E., and Hammer, J. A., 3rd (2014) Nonmuscle myosin II iso–forms coassemble in living cells, Curr. Biol., 24, 1160–1166.Google Scholar
  10. 10.
    Shutova, M. S., Spessott, W. A., Giraudo, C. G., and Svitkina, T. (2014) Endogenous species of mammalian nonmuscle myosin IIA and IIB include activated monomers and heteropolymers, Curr. Biol., 24, 1958–1968.Google Scholar
  11. 11.
    Mitsuhashi, M., Sakata, H., Kinjo, M., Yazawa, M., and Takahashi, M. (2011) Dynamic assembly properties of nonmuscle myosin II isoforms revealed by combination of fluorescence correlation spectroscopy and fluorescence cross–correlation spectroscopy, J. Biochem., 149, 253–263.Google Scholar
  12. 12.
    Liu, X., Billington, N., Shu, S., Yu, S. H., Piszczek, G., Sellers, J. R., and Korn, E. D. (2017) Effect of ATP and regulatory light–chain phosphorylation on the polymerization of mammalian nonmuscle myosin II, Proc. Natl. Acad. Sci. USA, 114, E6516–E6525.Google Scholar
  13. 13.
    Liu, X., Shu, S., and Korn, E. D. (2018) Polymerization pathway of mammalian nonmuscle myosin 2s, Proc. Natl. Acad. Sci. USA, 115, E7101–E7108.Google Scholar
  14. 14.
    Rosenberg, M., Straussman, R., Ben–Ya’acov, A., Ronen, D., and Ravid, S. (2008) MHC–IIB filament assembly and cellular localization are governed by the rod net charge, PLoS One, 3, e1496.Google Scholar
  15. 15.
    Beach, J. R., and Hammer, J. A., 3rd (2015) Myosin II iso–form co–assembly and differential regulation in mammalian systems, Exp. Cell Res., 334, 2–9.Google Scholar
  16. 16.
    Dulyaninova, N. G., and Bresnick, A. R. (2013) The heavy chain has its day: regulation of myosin II assembly, Bioarchitecture, 3, 77–85.Google Scholar
  17. 17.
    Murakami, N., Kotula, L., and Hwang, Y. W. (2000) Two distinct mechanisms for regulation of nonmuscle myosin assembly via the heavy chain: phosphorylation for MIIB and Mts 1 binding for MIIA, Biochemistry, 39, 11441–11451.Google Scholar
  18. 18.
    Ronen, D., and Ravid, S. (2009) Myosin II tailpiece determines its paracrystal structure, filament assembly properties, and cellular localization, J. Biol. Chem., 284, 24948–24957.Google Scholar
  19. 19.
    Dulyaninova, N. G., Malashkevich, V. N., Almo, S. C., and Bresnick, A. R. (2005) Regulation of myosin–IIA assembly and Mts1 binding by heavy chain phosphorylation, Biochemistry, 44, 6867–6876.Google Scholar
  20. 20.
    Ecsedi, P., Billington, N., Palfy, G., Gogl, G., Kiss, B., Bulyaki, E., Bodor, A., Sellers, J. R., and Nyitray, L. (2018) Multiple S100 protein isoforms and C–terminal phosphorylation contribute to the paralog–selective regulation of nonmuscle myosin 2 filaments, J. Biol. Chem., 293, 14850–14867.Google Scholar
  21. 21.
    Breckenridge, M. T., Dulyaninova, N. G., and Egelhoff, T. T. (2009) Multiple regulatory steps control mammalian nonmuscle myosin II assembly in live cells, Mol. Biol. Cell, 20, 338–347.Google Scholar
  22. 22.
    Juanes–Garcia, A., Chapman, J. R., Aguilar–Cuenca, R., Delgado–Arevalo, C., Hodges, J., Whitmore, L. A., Shabanowitz, J., Hunt, D. F., Horwitz, A. R., and Vicente–Manzanares, M. (2015) A regulatory motif in nonmuscle myosin II–B regulates its role in migratory front–back polarity, J. Cell Biol., 209, 23–32.Google Scholar
  23. 23.
    Rosenberg, M., and Ravid, S. (2006) Protein kinase C gamma regulates myosin IIB phosphorylation, cellular localization, and filament assembly, Mol. Biol. Cell, 17, 1364–1374.Google Scholar
  24. 24.
    Du, M., Wang, G., Ismail, T. M., Gross, S., Fernig, D. G., Barraclough, R., and Rudland, P. S. (2012) S100P dissociates myosin IIA filaments and focal adhesion sites to reduce cell adhesion and enhance cell migration, J. Biol. Chem., 287, 15330–15344.Google Scholar
  25. 25.
    Dahan, I., Yearim, A., Touboul, Y., and Ravid, S. (2012) The tumor suppressor Lgl1 regulates NMIIA cellular distribution and focal adhesion morphology to optimize cell migration, Mol. Biol. Cell, 23, 591–601.Google Scholar
  26. 26.
    Solinet, S., Akpovi, C. D., Garcia, C. J., Barry, A., and Vitale, M. L. (2011) Myosin IIB deficiency in embryonic fibroblasts affects regulators and core members of the par polarity complex, Histochem. Cell Biol., 136, 245–266.Google Scholar
  27. 27.
    West–Foyle, H., Kothari, P., Osborne, J., and Robinson, D. N. (2018) 14–3–3 proteins tune non–muscle myosin II assembly, J. Biol. Chem., 293, 6751–6761.Google Scholar
  28. 28.
    Billington, N., Beach, J. R., Heissler, S. M., Remmert, K., Guzik–Lendrum, S., Nagy, A., Takagi, Y., Shao, L., Li, D., Yang, Y., Zhang, Y., Barzik, M., Betzig, E., Hammer, J. A., 3rd, and Sellers, J. R. (2015) Myosin 18A coassembles with nonmuscle myosin 2 to form mixed bipolar filaments, Curr. Biol., 25, 942–948.Google Scholar
  29. 29.
    Sanborn, K. B., Mace, E. M., Rak, G. D., Difeo, A., Martignetti, J. A., Pecci, A., Bussel, J. B., Favier, R., and Orange, J. S. (2011) Phosphorylation of the myosin IIA tailpiece regulates single myosin IIA molecule association with lytic granules to promote NK–cell cytotoxicity, Blood, 118, 5862–5871.Google Scholar
  30. 30.
    Shutova, M., Yang, C., Vasiliev, J. M., and Svitkina, T. (2012) Functions of nonmuscle myosin II in assembly of the cellular contractile system, PLoS One, 7, e40814.Google Scholar
  31. 31.
    Verkhovsky, A. B., Svitkina, T. M., and Borisy, G. G. (1995) Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles, J. Cell Biol., 131, 989–1002.Google Scholar
  32. 32.
    Svitkina, T. M., Verkhovsky, A. B., McQuade, K. M., and Borisy, G. G. (1997) Analysis of the actin–myosin II system in fish epidermal keratocytes: mechanism of cell body translocation, J. Cell Biol., 139, 397–415.Google Scholar
  33. 33.
    Beach, J. R., Bruun, K. S., Shao, L., Li, D., Swider, Z., Remmert, K., Zhang, Y., Conti, M. A., Adelstein, R. S., Rusan, N. M., Betzig, E., and Hammer, J. A. (2017) Actin dynamics and competition for myosin monomer govern the sequential amplification of myosin filaments, Nat. Cell Biol., 19, 85–93.Google Scholar
  34. 34.
    Hu, S., Dasbiswas, K., Guo, Z., Tee, Y. H., Thiagarajan, V., Hersen, P., Chew, T. L., Safran, S. A., Zaidel–Bar, R., and Bershadsky, A. D. (2017) Long–range self–organization of cytoskeletal myosin II filament stacks, Nat. Cell Biol., 19, 133–141.Google Scholar
  35. 35.
    Uyeda, T. Q., Iwadate, Y., Umeki, N., Nagasaki, A., and Yumura, S. (2011) Stretching actin filaments within cells enhances their affinity for the myosin II motor domain, PloS One, 6, e26200.Google Scholar
  36. 36.
    Martin, A. C. (2010) Pulsation and stabilization: contractile forces that underlie morphogenesis, Dev. Biol., 341, 114–125.Google Scholar
  37. 37.
    Spira, F., Cuylen–Haering, S., Mehta, S., Samwer, M., Reversat, A., Verma, A., Oldenbourg, R., Sixt, M., and Gerlich, D. W. (2017) Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments, Elife, 6, e30867.Google Scholar
  38. 38.
    Baird, M. A., Billington, N., Wang, A., Adelstein, R. S., Sellers, J. R., Fischer, R. S., and Waterman, C. M. (2017) Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells, Mol. Biol. Cell, 28, 240–251.Google Scholar
  39. 39.
    Hotulainen, P., and Lappalainen, P. (2006) Stress fibers are generated by two distinct actin assembly mechanisms in motile cells, J. Cell Biol., 173, 383–394.Google Scholar
  40. 40.
    Tojkander, S., Gateva, G., and Lappalainen, P. (2012) Actin stress fibers–assembly, dynamics and biological roles, J. Cell Sci., 125, 1855–1864.Google Scholar
  41. 41.
    Tee, Y. H., Shemesh, T., Thiagarajan, V., Hariadi, R. F., Anderson, K. L., Page, C., Volkmann, N., Hanein, D., Sivaramakrishnan, S., Kozlov, M. M., and Bershadsky, A. D. (2015) Cellular chirality arising from the self–organization of the actin cytoskeleton, Nat. Cell Biol., 17, 445–457.Google Scholar
  42. 42.
    Lee, S., Kassianidou, E., and Kumar, S. (2018) Actomyosin stress fiber subtypes have unique viscoelastic properties and roles in tension generation, Mol. Biol. Cell, 29, 1992–2004.Google Scholar
  43. 43.
    Tojkander, S., Gateva, G., Husain, A., Krishnan, R., and Lappalainen, P. (2015) Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly, Elife, 4, e06126.Google Scholar
  44. 44.
    Sandquist, J. C., and Means, A. R. (2008) The C–terminal tail region of nonmuscle myosin II directs isoform–specific distribution in migrating cells, Mol. Biol. Cell, 19, 5156–5167.Google Scholar
  45. 45.
    Vicente–Manzanares, M., Koach, M. A., Whitmore, L., Lamers, M. L., and Horwitz, A. F. (2008) Segregation and activation of myosin IIB creates a rear in migrating cells, J. Cell Biol., 183, 543–554.Google Scholar
  46. 46.
    Dey, S. K., Singh, R. K., Chattoraj, S., Saha, S., Das, A., Bhattacharyya, K., Sengupta, K., Sen, S., and Jana, S. S. (2017) Differential role of nonmuscle myosin II isoforms during blebbing of MCF–7 cells, Mol. Biol. Cell, 28, 1034–1042.Google Scholar
  47. 47.
    Dulyaninova, N. G., House, R. P., Betapudi, V., and Bresnick, A. R. (2007) Myosin–IIA heavy–chain phosphorylation regulates the motility of MDA–MB–231 carcinoma cells, Mol. Biol. Cell, 18, 3144–3155.Google Scholar
  48. 48.
    Pasapera, A. M., Plotnikov, S. V., Fischer, R. S., Case, L. B., Egelhoff, T. T., and Waterman, C. M. (2015) Rac1–dependent phosphorylation and focal adhesion recruitment of myosin IIA regulates migration and mechanosensing, Curr. Biol., 25, 175–186.Google Scholar
  49. 49.
    Shutova, M. S., Asokan, S. B., Talwar, S., Assoian, R. K., Bear, J. E., and Svitkina, T. M. (2017) Self–sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility, J. Cell Biol., 216, 2877–2889.Google Scholar
  50. 50.
    Sun, Z., Guo, S. S., and Fassler, R. (2016) Integrin–mediated mechanotransduction, J. Cell Biol., 215, 445–456.Google Scholar
  51. 51.
    Cai, Y., Biais, N., Giannone, G., Tanase, M., Jiang, G., Hofman, J. M., Wiggins, C. H., Silberzan, P., Buguin, A., Ladoux, B., and Sheetz, M. P. (2006) Nonmuscle myosin IIA–dependent force inhibits cell spreading and drives Factin flow, Biophys. J., 91, 3907–3920.Google Scholar
  52. 52.
    Thomas, D. G., Yenepalli, A., Denais, C. M., Rape, A., Beach, J. R., Wang, Y. L., Schiemann, W. P., Baskaran, H., Lammerding, J., and Egelhoff, T. T. (2015) Non–muscle myosin IIB is critical for nuclear translocation during 3D invasion, J. Cell Biol., 210, 583–594.Google Scholar
  53. 53.
    Betapudi, V. (2010) Myosin II motor proteins with different functions determine the fate of lamellipodia extension during cell spreading, PLoS One, 5, e8560.Google Scholar
  54. 54.
    Saha, S., Dey, S. K., Biswas, A., Das, P., Das, M. R., and Jana, S. S. (2013) The effect of including the C2 insert of nonmuscle myosin II–C on neuritogenesis, J. Biol. Chem., 288, 7815–7828.Google Scholar
  55. 55.
    Wylie, S. R., and Chantler, P. D. (2008) Myosin IIC: a third molecular motor driving neuronal dynamics, Mol. Biol. Cell, 19, 3956–3968.Google Scholar
  56. 56.
    Lo, C. M., Buxton, D. B., Chua, G. C., Dembo, M., Adelstein, R. S., and Wang, Y. L. (2004) Nonmuscle myosin IIb is involved in the guidance of fibroblast migration, Mol. Biol. Cell, 15, 982–989.Google Scholar
  57. 57.
    Betapudi, V., Licate, L. S., and Egelhoff, T. T. (2006) Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA–MB–231 breast cancer cell spreading and migration, Cancer Res., 66, 4725–4733.Google Scholar
  58. 58.
    Alexandrova, A. Y., Arnold, K., Schaub, S., Vasiliev, J. M., Meister, J. J., Bershadsky, A. D., and Verkhovsky, A. B. (2008) Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow, PLoS One, 3, e3234.Google Scholar
  59. 59.
    Gardel, M. L., Sabass, B., Ji, L., Danuser, G., Schwarz, U. S., and Waterman, C. M. (2008) Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed, J. Cell Biol., 183, 999–1005.Google Scholar
  60. 60.
    Wylie, S. R., and Chantler, P. D. (2003) Myosin IIA drives neurite retraction, Mol. Biol. Cell, 14, 4654–4666.Google Scholar
  61. 61.
    Bridgman, P. C., Dave, S., Asnes, C. F., Tullio, A. N., and Adelstein, R. S. (2001) Myosin IIB is required for growth cone motility, J. Neurosci., 21, 6159–6169.Google Scholar
  62. 62.
    Liu, Y. J., Le Berre, M., Lautenschlaeger, F., Maiuri, P., Callan–Jones, A., Heuze, M., Takaki, T., Voituriez, R., and Piel, M. (2015) Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells, Cell, 160, 659–672.Google Scholar
  63. 63.
    Wolf, K., Te Lindert, M., Krause, M., Alexander, S., Te Riet, J., Willis, A. L., Hoffman, R. M., Figdor, C. G., Weiss, S. J., and Friedl, P. (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force, J. Cell Biol., 201, 1069–1084.Google Scholar
  64. 64.
    Even–Ram, S., Doyle, A. D., Conti, M. A., Matsumoto, K., Adelstein, R. S., and Yamada, K. M. (2007) Myosin IIA regulates cell motility and actomyosin–microtubule crosstalk, Nat. Cell Biol., 9, 299–309.Google Scholar
  65. 65.
    Liu, Z., Ho, C. H., and Grinnell, F. (2014) The different roles of myosin IIA and myosin IIB in contraction of 3D collagen matrices by human fibroblasts, Exp. Cell Res., 326, 295–306.Google Scholar
  66. 66.
    Beach, J. R., Hussey, G. S., Miller, T. E., Chaudhury, A., Patel, P., Monslow, J., Zheng, Q., Keri, R. A., Reizes, O., Bresnick, A. R., Howe, P. H., and Egelhoff, T. T. (2011) Myosin II isoform switching mediates invasiveness after TGF–beta–induced epithelial–mesenchymal transition, Proc. Natl. Acad. Sci. USA, 108, 17991–17996.Google Scholar
  67. 67.
    Roy, A., Lordier, L., Mazzi, S., Chang, Y., Lapierre, V., Larghero, J., Debili, N., Raslova, H., and Vainchenker, W. (2016) Activity of nonmuscle myosin II isoforms determines localization at the cleavage furrow of megakaryocytes, Blood, 128, 3137–3145.Google Scholar
  68. 68.
    Badirou, I., Pan, J., Legrand, C., Wang, A., Lordier, L., Boukour, S., Roy, A., Vainchenker, W., and Chang, Y. (2014) Carboxyl–terminal–dependent recruitment of nonmuscle myosin II to megakaryocyte contractile ring during polyploidization, Blood, 124, 2564–2568.Google Scholar
  69. 69.
    Beach, J. R., and Egelhoff, T. T. (2009) Myosin II recruitment during cytokinesis independent of centralspindlin–mediated phosphorylation, J. Biol. Chem., 284, 27377–27383.Google Scholar
  70. 70.
    Mui, K. L., Chen, C. S., and Assoian, R. K. (2016) The mechanical regulation of integrin–cadherin crosstalk organizes cells, signaling and forces, J. Cell Sci., 129, 1093–1100.Google Scholar
  71. 71.
    Chung, S., Kim, S., and Andrew, D. J. (2017) Uncoupling apical constriction from tissue invagination, Elife, 6, e22235.Google Scholar
  72. 72.
    Efimova, N., and Svitkina, T. M. (2018) Branched actin networks push against each other at adherens junctions to maintain cell–cell adhesion, J. Cell Biol., 217, 1827–1845.Google Scholar
  73. 73.
    Gomez, G. A., McLachlan, R. W., Wu, S. K., Caldwell, B. J., Moussa, E., Verma, S., Bastiani, M., Priya, R., Parton, R. G., Gaus, K., Sap, J., and Yap, A. S. (2015) An RPTPalpha/Src family kinase/Rap1 signaling module recruits myosin IIB to support contractile tension at apical E–cadherin junctions, Mol. Biol. Cell, 26, 1249–1262.Google Scholar
  74. 74.
    Ma, X., Sung, D. C., Yang, Y., Wakabayashi, Y., and Adelstein, R. S. (2017) Nonmuscle myosin IIB regulates epicardial integrity and epicardium–derived mesenchymal cell maturation, J. Cell Sci., 130, 2696–2706.Google Scholar
  75. 75.
    Ivanov, A. I., and Naydenov, N. G. (2013) Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies, Int. Rev. Cell Mol. Biol., 303, 27–99.Google Scholar
  76. 76.
    Ozawa, M. (2018) Nonmuscle myosin IIA is involved in recruitment of apical junction components through activation of alpha–catenin, Biol. Open, 7, bio031369.Google Scholar
  77. 77.
    Smutny, M., Cox, H. L., Leerberg, J. M., Kovacs, E. M., Conti, M. A., Ferguson, C., Hamilton, N. A., Parton, R. G., Adelstein, R. S., and Yap, A. S. (2010) Myosin II iso–forms identify distinct functional modules that support integrity of the epithelial zonula adherens, Nat. Cell Biol., 12, 696–702.Google Scholar
  78. 78.
    Rosa, A., Vlassaks, E., Pichaud, F., and Baum, B. (2015) Ect2/Pbl acts via Rho and polarity proteins to direct the assembly of an isotropic actomyosin cortex upon mitotic entry, Dev. Cell, 32, 604–616.Google Scholar
  79. 79.
    Bovellan, M., Romeo, Y., Biro, M., Boden, A., Chugh, P., Yonis, A., Vaghela, M., Fritzsche, M., Moulding, D., Thorogate, R., Jegou, A., Thrasher, A. J., Romet–Lemonne, G., Roux, P. P., Paluch, E. K., and Charras, G. (2014) Cellular control of cortical actin nucleation, Curr. Biol., 24, 1628–1635.Google Scholar
  80. 80.
    Smith, A. S., Nowak, R. B., Zhou, S., Giannetto, M., Gokhin, D. S., Papoin, J., Ghiran, I. C., Blanc, L., Wan, J., and Fowler, V. M. (2018) Myosin IIA interacts with the spectrin–actin membrane skeleton to control red blood cell membrane curvature and deformability, Proc. Natl. Acad. Sci. USA, 115, E4377–E4385.Google Scholar
  81. 81.
    Porat–Shliom, N., Milberg, O., Masedunskas, A., and Weigert, R. (2013) Multiple roles for the actin cytoskeleton during regulated exocytosis, Cell. Mol. Life Sci., 70, 2099–2121.Google Scholar
  82. 82.
    Chandrasekar, I., Goeckeler, Z. M., Turney, S. G., Wang, P., Wysolmerski, R. B., Adelstein, R. S., and Bridgman, P. C. (2014) Nonmuscle myosin II is a critical regulator of clathrin–mediated endocytosis, Traffic, 15, 418–432.Google Scholar
  83. 83.
    Fath, K. R. (2005) Characterization of myosin–II binding to Golgi stacks in vitro, Cell Motil. Cytoskeleton, 60, 222–235.Google Scholar
  84. 84.
    Petrosyan, A., Ali, M. F., Verma, S. K., Cheng, H., and Cheng, P. W. (2012) Non–muscle myosin IIA transports a Golgi glycosyltransferase to the endoplasmic reticulum by binding to its cytoplasmic tail, Int. J. Biochem, Cell Biol., 44, 1153–1165.Google Scholar
  85. 85.
    Korobova, F., Gauvin, T. J., and Higgs, H. N. (2014) A role for myosin II in mammalian mitochondrial fission, Curr. Biol., 24, 409–414.Google Scholar
  86. 86.
    Rousso, T., Schejter, E. D., and Shilo, B. Z. (2016) Orchestrated content release from Drosophila glue–protein vesicles by a contractile actomyosin network, Nat. Cell Biol., 18, 181–190.Google Scholar
  87. 87.
    Milberg, O., Shitara, A., Ebrahim, S., Masedunskas, A., Tora, M., Tran, D. T., Chen, Y., Conti, M. A., Adelstein, R. S., Ten Hagen, K. G., and Weigert, R. (2017) Concerted actions of distinct nonmuscle myosin II isoforms drive intracellular membrane remodeling in live animals, J. Cell Biol., 216, 1925–1936.Google Scholar
  88. 88.
    Miklavc, P., Hecht, E., Hobi, N., Wittekindt, O. H., Dietl, P., Kranz, C., and Frick, M. (2012) Actin coating and compression of fused secretory vesicles are essential for surfactant secretion–a role for Rho, formins and myosin II, J. Cell Sci., 125, 2765–2774.Google Scholar
  89. 89.
    Nightingale, T. D., White, I. J., Doyle, E. L., Turmaine, M., Harrison–Lavoie, K. J., Webb, K. F., Cramer, L. P., and Cutler, D. F. (2011) Actomyosin II contractility expels von Willebrand factor from Weibel–Palade bodies during exo–cytosis, J. Cell Biol., 194, 613–629.Google Scholar
  90. 90.
    Miserey–Lenkei, S., Bousquet, H., Pylypenko, O., Bardin, S., Dimitrov, A., Bressanelli, G., Bonifay, R., Fraisier, V., Guillou, C., Bougeret, C., Houdusse, A., Echard, A., and Goud, B. (2017) Coupling fission and exit of RAB6 vesicles at Golgi hotspots through kinesin–myosin interactions, Nat. Commun., 8, 1254.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations