Biochemistry (Moscow)

, Volume 83, Issue 7, pp 846–854 | Cite as

In vivo Proinflammatory Cytokine Production by CD-1 Mice in Response to Equipotential Doses of Rhodobacter capsulatus PG and Salmonella enterica Lipopolysaccharides

  • D. S. KabanovEmail author
  • V. A. Rykov
  • S. V. Prokhorenko
  • A. N. Murashev
  • I. R. Prokhorenko


The capacities of relatively nontoxic lipopolysaccharide (LPS) from Rhodobacter capsulatus PG and highly potent LPS from Salmonella enterica serovar Typhimurium to evoke proinflammatory cytokine production have been compared in vivo. Intravenous administration of S. enterica LPS at a relatively low dose (1 mg/kg body weight) led to upregulation of TNF-α, IL-6, and IFN-γ production by non-sensitized CD-1 mice. LPS from R. capsulatus PG used at a four-times higher dose than that from S. enterica elicited production of almost the same amount of systemic TNF-α; therefore, the doses of 4 mg/kg LPS from R. capsulatus PG and 1 mg/kg LPS from S. enterica were considered to be approximately equipotential doses with respect to the LPS-dependent TNF-α production by CD-1 mice. Rhodobacter capsulatus PG LPS was a weaker inducer of the production of TNF-α, IL-6, and IFN-γ, as compared to the equipotential dose of S. enterica LPS. Administration of R. capsulatus PG LPS before S. enterica LPS decreased production of IFN-γ, but not of TNF-α and IL-6, induced by S. enterica LPS. Rhodobacter capsulatus PG LPS also suppressed IFN-γ production induced by S. enterica LPS when R. capsulatus PG LPS had been injected as little as 10 min after S. enterica LPS, but to a much lesser extent. Rhodobacter capsulatus PG LPS did not affect TNF-α and IL-6 production induced by the equipotential dose of S. enterica LPS. In order to draw conclusion on the endotoxic activity of particular LPSs, species-specific structure or arrangement of the animal or human immune systems should be considered.


LPS lipid A Rhodobacter capsulatus Salmonella enterica CD-1 mice cytokines TNF-α IL-6 IFN-γ 











interquartile range






myeloid differentiation factor 2, a secreted glycoprotein


pattern recognition receptor


Toll-like receptor


tumor necrosis factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andino, A., and Hanning, I. (2015) Salmonella enterica: survival, colonization, and virulence differences among serovars, Sci. World J., doi: 10.1155/2015/520179.Google Scholar
  2. 2.
    Jiang, J. M. D., Bahrami, S., Leichtfried, G., Redl, H., Ohlinger, W., and Schlag, G. (1995) Kinetics of endotoxin and tumor necrosis factor appearance in portal and sys–temic circulation after hemorrhagic shock in rats, Ann. Surg., 221, 100–106.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chereshnev, V. A., Gusev, Ye. Yu., and Yurchenko, L. N. (2004) Systemic inflammation: myth or reality? Herald Russ. Acad. Sci., 3, 219–227.Google Scholar
  4. 4.
    Mogensen, T. H. (2009) Pathogen recognition and inflam–matory signaling in innate immune defenses, Clin. Microbiol. Rev., 22, 240–273.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tukhvatulin, A. I., Logunov, D. Y., Shcherbinin, D. N., Shmarov, M. M., Naroditsky, B. S., Gudkov, A. V., and Gintsburg, A. L. (2010) Toll–like receptors and their adapter molecules, Biochemistry (Moscow), 75, 1098–1114.CrossRefGoogle Scholar
  6. 6.
    Takeuchi, O., and Akira, S. (2010) Pattern recognition receptors and inflammation, Cell, 140, 805–820.CrossRefPubMedGoogle Scholar
  7. 7.
    Schmitz, G., and Orso, E. (2002) CD14 signalling in lipids rafts: new ligands and co–receptors, Curr. Opin. Lipidol., 13, 513–521.CrossRefPubMedGoogle Scholar
  8. 8.
    Kang, C.–I., Kim, S.–H., Park, W. B., Lee, K.–D., Kim, H.–B., Kim, E.–C., Oh, M. D., and Choe, K.–W. (2005) Bloodstream infections caused by antibiotic–resistant Gram–negative bacilli: risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome, Antimicrob. Agents Chemother., 49, 760–766.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Futosi, K., Fodor, S., and Mocsai, A. (2013) Neutrophil cell surface receptors and their intracellular signal trans–duction pathways, Int. Immunopharmacol., 17, 638–650.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Piazza, M., Yu, L., Teghanemt, A., Gioannini, T., Weiss, J., and Peri, F. (2009) Evidence of a specific interaction between new synthetic antisepsis agents and CD14, Biochemistry, 48, 12337–12344.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pazidis, A., Champipis, A., Gkougkourelas, I., and Boura, P. (2012) CD14/TLR4 in sepsis pathogenesis and therapy, Aristotle Univ. Med. J., 39, 19–28.Google Scholar
  12. 12.
    Vorobeva, E. V., Krasikova, I. N., and Solov’eva, T. F. (2006) Influence of lipopolysaccharides and lipids A from some marine bacteria on spontaneous and Escherichia coli LPS–induced TNF–alpha release from peripheral human blood cells, Biochemistry (Moscow), 71, 759–766.CrossRefGoogle Scholar
  13. 13.
    Rose, J. R., Christ, W. J., Bristol, J. R., Kawata, T., and Rossignol, D. P. (1995) Agonistic and antagonistic activi–ties of bacterially derived Rhodobacter sphaeroides lipid A: comparison with activities of synthetic material of the pro–posed structure and analogs, Infect. Immun., 63, 833–839.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Loppnow, H., Libby, P., Freudenberg, M., Krauss, J. H., Weckesser, J., and Mayer, H. (1990) Cytokine induction by lipopolysaccharide (LPS) corresponds to lethal toxicity and is inhibited by nontoxic Rhodobacter capsulatus LPS, Infect. Immun., 58, 3743–3750.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Krauss, J. H., Seydel, U., Weckesser, J., and Mayer, H. (1989) Structural analysis of the nontoxic lipid A of Rhodobacter capsulatus 37b4, Eur. J. Biochem., 180, 519–526.CrossRefPubMedGoogle Scholar
  16. 16.
    Voloshina, E. V., Kosiakova, N. I., and Prokhorenko, I. R. (2014) Lipopolysaccharide from Rhodobacter capsulatus counteracts the effects of toxic lipopolysaccharides and inhibits the release of TNF–α, IL–6, and IL–1β in human whole blood, Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol., 8, 23–29.CrossRefGoogle Scholar
  17. 17.
    Kabanov, D. S., Serov, D. A., Zubova, S. V., Grachev, S. V., and Prokhorenko, I. R. (2016) Dynamics of antagonistic potency of Rhodobacter capsulatus PG lipopolysaccharide against endotoxin–induced effects, Biochemistry (Moscow), 81, 275–283.CrossRefGoogle Scholar
  18. 18.
    Prokhorenko, I. R., Grachev, S. V., and Zubova, S. V. (2010) Russian Federation Patent No. 2008146035/13, Nov. 24, 2008, Strain Rhodobacter capsulatus PG–produc–er of lipopolysaccharide, endotoxin antagonist, No. 2392309, Bul., 17.Google Scholar
  19. 19.
    Leon, C. G., Tory, R., Jia, J., Sivak, O., and Wasan, K. M. (2008) Discovery and development of Toll–like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases, Pharm. Res., 25, 1751–1761.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kawata, T., Bristol, J. R., Rossignol, D. P., Rose, J. R., Kobayashi, S., Yokohama, H., Ishibashi, A., Christ, W. J., Katayama, K., Yamatsu, I., and Kishi, Y. (1999) E5531, a synthetic non–toxic lipid A derivative blocks the immuno–biological activities of lipopolysaccharide, Br. J. Pharmacol., 127, 853–862.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Solov’eva, T., Davydova, V., Krasikova, I., and Yermak, I. (2013) Marine compounds with therapeutic potential in Gram–negative sepsis, Mar. Drugs, 11, 2216–2229.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kokoulin, M. S. (2014) Structural Study of O–antigenic Polysaccharides from Some Gram–negative Marine Bacteria by NMR Spectroscopy: PhD thesis [in Russian], Vladivostok.Google Scholar
  23. 23.
    Prokhorenko, I. R., Kustanova, G. A., Grazhdankin, E. B., Kabanov, D. S., Murashev, A. N., Prokhorenko, S. V., and Grachev, S. V. (2005) Effect of lipopolysaccharides having different structures on the cardiovascular system of Wistar rats, Dokl. Biol. Sci., 402, 189–191.CrossRefPubMedGoogle Scholar
  24. 24.
    Prokhorenko, I. R., Zolotushchenko, E. V., Tarasevich, N. V., Avkhacheva, N. V., Safronova, V. G., and Grachev, S. V. (2007) Respiratory burst activated by Escherichia coli in human neutrophils primed with different lipopolysaccha–rides, Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol., 1, 310–317.CrossRefGoogle Scholar
  25. 25.
    Makhneva, Z. K., Vishnivetskaya, T. A., and Prokhorenko, I. R. (1996) Effect of isolation procedures on the yield and composition of lipopolysaccharides from photosynthetic bacteria, Appl. Biochem. Microbiol., 32, 405–407.Google Scholar
  26. 26.
    Kul’shin, V. A., Iakovlev, A. P., Avaeva, S. N., and Dmitriev, B. A. (1987) Improved method of lipopolysac–charide isolation from gram–negative bacteria, Mol. Gen. Microbiol. Virusol., 5, 44–46.Google Scholar
  27. 27.
    Lee, C.–H., and Tsai, C.–M. (1999) Quantification of bac–terial lipopolysaccharides by the Purpald assay: measuring formaldehyde generated from 2–keto–3–deoxyoctonate and heptose at the inner core by periodate oxidation, Anal. Biochem., 267, 161–168.CrossRefPubMedGoogle Scholar
  28. 28.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utiliz–ing the principle of protein–dye binding, Anal. Biochem., 72, 248–254.CrossRefPubMedGoogle Scholar
  29. 29.
    Spirin, A. S. (1958) Spectrophotometric definition of the total quantity of nucleic acids, Biochemistry (Moscow), 23, 656–662.Google Scholar
  30. 30.
    Krauss, J. H., Weckesser, J., and Mayer, H. (1988) Electrophoretic analysis of lipopolysaccharides of purple nonsulfur bacteria, Int. J. Syst. Bacteriol., 38, 157–163.CrossRefGoogle Scholar
  31. 31.
    Tan, L., and Grewal, P. S. (2002) Comparison of two silver staining techniques for detecting lipopolysaccharides in polyacrylamide gels, J. Clin. Microbiol., 40, 4372–4374.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kabanov, D. S. (2006) Changes in Cell Surface Characteristics of the Erythrocyte Membrane after Incorporation of Lipopolysaccharides from Gram–negative Bacteria: PhD Thesis [in Russian], Pushchino.Google Scholar
  33. 33.
    Zubova, S. V., Ivanov, A. Yu., and Prokhorenko, I. R. (2007) Relations between the chemotype and the cell elec–trophoretic properties in Rhodobacter capsulatus strains, Mikrobiologiia, 76, 206–211.PubMedGoogle Scholar
  34. 34.
    Instruction of the Ministry of Health of the Russian Federation No. 267 of 19.06.2003 “Rules of laboratory practice in Russian Federation”, National Standard of the Russian Federation “Principles of Good Laboratory Practice” (GLP).Google Scholar
  35. 35.
    Kravchenko, I. N., Khokhlova, O. N., Kravchenko, N. N., Puzhalin, A. N., Dyachenko, I. A., and Murashev, A. N. (2008) Hematological characters of normal specific pathogen–free CD (Sprague–Dawley) rats and CD–1 mice, Biomedicine, 2, 20–30.Google Scholar
  36. 36.
    Masferrer, J. L., Seibert, K., Zweifel, B., and Needleman, P. (1992) Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme, Proc. Natl. Acad. Sci. USA, 89, 3917–3921.CrossRefPubMedGoogle Scholar
  37. 37.
    Lehner, M. D., Ittner, J., Bundschuh, D. S., van Rooijen, N., Wendel, A., and Hartung, T. (2001) Improved innate immunity of endotoxin–tolerant mice increases resistance to Salmonella enterica serovar Typhimurium infection despite attenuated cytokine response, Infect. Immun., 69, 463–471.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ren, Y., Xie, Y., Jiang, G., Fan, J., Yeung, J., Li, W., Tam, P. K. H., and Savill, J. (2008) Apoptotic cells protect mice against lipopolysaccharide–induced shock, J. Immunol., 180, 4978–4985.CrossRefPubMedGoogle Scholar
  39. 39.
    Shalaby, M. R., Waage, A., Aarden, L., and Espevik, T. (1989) Endotoxin, tumor necrosis factor–α and interleukin 1 induce interleukin 6 production in vivo, Clin. Immunol. Immunopathol., 53, 488–498.CrossRefPubMedGoogle Scholar
  40. 40.
    Lohmann, K. L., Vandenplas, M., Barton, M. H., and Moore, J. N. (2003) Lipopolysaccharide from Rhodobacter sphaeroides is an agonist in equine cells, J. Endotoxin Res., 9, 33–37.CrossRefPubMedGoogle Scholar
  41. 41.
    Warren, H. S., Fitting, C., Hoff, E., Adib–Conquy, M., Beasley–Topliffe, L., Tesini, B., Liang, X., Valentine, C., Hellman, J., Hayden, D., and Cavaillon, J.–M. (2010) Resilience to bacterial infection: difference between species could be due to proteins in serum, J. Infect. Dis., 201, 223–232.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Freudenberg, M. A., and Galanos, Ch. (1988) Induction of tolerance to lipopolysaccharide (LPS)–D–galactosamine lethality by pretreatment with LPS is mediated by macrophages, Infect. Immun., 56, 1352–1357.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Kobayashi, S., Kawata, T., Kimura, A., Miyamoto, K., Katayama, K., Yamatsu, I., Rossignol, D. P., Christ, W. J., and Kishi, Y. (1998) Suppression of murine endotoxin response by E5531, a novel synthetic lipid A antagonist, Antimicrob. Agents Chemother., 42, 2824–2829.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Leone, S., Sturiale, L., Pessione, E., Mazzoli, R., Giunta, C., Lanzetta, R., Garozzo, D., Molinaro, A., and Parrilli, M. (2007) Detailed characterization of the lipid A fraction from the nonpathogen Acinetobacter radioresistens strain S13, J. Lipid Res., 48, 1045–1051.CrossRefPubMedGoogle Scholar
  45. 45.
    Steimle, A., Autenrieth, I. B., and Frick, J.–S. (2016) Structure and function: lipid A modifications in commen–sals and pathogens, Int. J. Med. Microbiol., 306, 290–301.CrossRefPubMedGoogle Scholar
  46. 46.
    Perez–Dorado, I., Bortolotti, A., Cortez, N., and Hermoso, J. A. (2013) Structural and phylogenetic analysis of Rhodobacter capsulatus NifF: uncovering general features of nitrogen–fixation (nif)–flavodoxins, Int. J. Mol. Sci., 14, 1152–1163.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Satoh, S., Mimuro, M., and Tanaka, A. (2013) Construction of a phylogenetic tree of photosynthetic prokaryotes based on average similarities of whole genome sequences, PLOS One, 8, e70290.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Park, B. S., Song, D. H., Kim, H. M., Choi, B.–S., Lee, H., and Lee, J.–O. (2009) The structural basis of lipopolysaccharide recognition by the TLR4–MD–2 com–plex, Nature, 458, 1191–1196.CrossRefPubMedGoogle Scholar
  49. 49.
    Pinsky, M. R., Vincent, J.–L., Deviere, J., Alegre, M., Kahn, R. J., and Dupont, E. (1993) Serum cytokine levels in human septic shock. Relation to multiple–system organ failure and mortality, Chest, 103, 565–575.CrossRefPubMedGoogle Scholar
  50. 50.
    Denlinger, L. C., Garis, K. A., Sommer, J. A., Guadarrama, A. G., Proctor, R. A., and Bertics, P. J. (1998) Nuclear translocation of NF–κB in lipopolysaccha–ride–treated macrophages fails to correspond to endotoxic–ity: evidence suggesting a requirement for a gamma inter–feron–like signal, Infect. Immun., 66, 1638–1647.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Kiener, P. A., Marek, F., Rodgers, G., Lin, P.–F., Warr, G., and Desiderio, J. (1988) Induction of tumor necrosis fac–tor, IFN–γ, and acute lethality in mice by toxic and non–toxic forms of lipid A, J. Immunol., 141, 870–874.PubMedGoogle Scholar
  52. 52.
    Doherty, G. M., Lange, J. R., Langstein, H. N., Alexander, H. R., Buresh, C. M., and Norton, J. A. (1992) Evidence for IFN–gamma as mediator of the lethality of endotoxin and tumor necrosis factor–alpha, J. Immunol., 149, 1666–1670.PubMedGoogle Scholar
  53. 53.
    Wang, H., and Yang, Y.–G. (2014) The complex and central role of interferon–γ in graft–versus–host disease and graft–versus–tumor activity, Immunol. Rev., 258, 30–44.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Komai–Koma, M., Gilchrist, D. S., and Xu, D. (2009) Direct recognition of LPS by human but not murine CD8+ T cells via TLR4 complex, Eur. J. Immunol., 39, 1564–1572.CrossRefPubMedGoogle Scholar
  55. 55.
    Marchant, A., Bruyns, C., Vandenabeele, P., Ducarme, M., Gerard, C., Delvaux, A., De Groote, D., Abramowicz, D., Velu, T., and Goldman, M. (1994) Interleukin–10 controls interferon–γ and tumor necrosis factor production during experimental endotoxemia, Eur. J. Immunol., 24, 1167–1171.CrossRefPubMedGoogle Scholar
  56. 56.
    Lin, S., Huang, Z., Wang, M., Weng, Z., Zeng, D., Zhang, Y., Zhu, Y., and Jiang, J. (2015) Interleukin–6 as an early diagnostic marker for bacterial sepsis in patients with liver cirrhosis, J. Crit. Care, 30, 732–738.CrossRefPubMedGoogle Scholar
  57. 57.
    Akira, S., Hirano, T., Taga, T., and Kishimoto, T. (1990) Biology of multifunctional cytokines: IL 6 and related mol–ecules (IL 1 and TNF), FASEB J., 4, 2860–2867.CrossRefPubMedGoogle Scholar
  58. 58.
    Sato, S., Richard, M. L., Brandon, D., Buie, J. N. J., Oates, J. C., Gilkeson, G. S., and Zhang, X. K. (2014) A critical role of the transcription factor Fli–1 in murine lupus development by regulation of interleukin–6 expression, Arthritis Rheumatol., 66, 3436–3444.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Munford, R. S. (2010) Murine responses to endotoxin: another dirty little secret? J. Infect. Dis., 201, 175–177.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hajjar, A. M., Ernst, R. K., Fortuno, E. S., 3rd., Brasfield, A. S., Yam, C. S., Newlon, L. A., Kollmann, T. R., Miller, S. I., and Wilson, C. B. (2012) Humanized TLR4/MD–2 mice reveal LPS recognition differentially impacts suscep–tibility to Yersinia pestis and Salmonella enterica, PLOS Pathogens, 8, e1002963.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mullarkey, M., Rose, J. R., Bristol, J., Kawata, T., Kimura, A., Kobayashi, S., Przetak, M., Chow, J., Gusovsky, F., Christ, W. J., and Rossignol, D. P. (2003) Inhibition of endotoxin response by E5564, a novel Toll–like receptor 4–directed endotoxin antagonist, J. Pharmacol. Exper. Ther., 304, 1093–1102.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. S. Kabanov
    • 1
    Email author
  • V. A. Rykov
    • 2
  • S. V. Prokhorenko
    • 3
  • A. N. Murashev
    • 2
  • I. R. Prokhorenko
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchinoRussia
  2. 2.Branch of Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesPushchinoRussia
  3. 3.Federal Research and Clinical Center of Intensive Care Medicine and RehabilitationMoscowRussia

Personalised recommendations