Advertisement

Automation and Remote Control

, Volume 80, Issue 8, pp 1471–1486 | Cite as

Estimating Scene Complexity by One and Two Local Observations

  • A. N. KarkishchenkoEmail author
Intellectual Control Systems, Data Analysis
  • 5 Downloads

Abstract

The formal problem to estimate the complexity of a scene with numerous obstacles and mobile objects is considered. By assumption there is only limited information on the location of obstacles in a small part of the scene, which is obtained by the sensor systems of one or more objects. Upper and lower bounds for the complexity of the scene are derived for one and two observations of the local domains.

Keywords

mobile object scene triangulation local complexity integral complexity complexity estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Russian Science Foundation, project no. 18-19-00621.

References

  1. 1.
    Intellektual’noe planirovanie traektorii podvizhnykh ob”ektov v sredakh s prepyatstviyami (Intelligent Path Planning for Mobile Objects in Environments with Obstacles), Pshikhopov, V.Kh., Ed., Moscow: Fizmatlit, 2014.Google Scholar
  2. 2.
    Path Planning for Vehicles Operating in Uncertain 2D Environments, Pshikhopov, V.Kh., Ed., Oxford: Elsevier, Butterworth-Heinemann, 2017.Google Scholar
  3. 3.
    Intellektual’nye tekhnologii planirovaniya peremeshchenii podvizhnykh ob”ektov v trekhmernykh nedeterminirovannykh sredakh (Intelligent Planning Technologies for the Movements of Mobile Objects in Nondeterministic 3D Environments), Pshikhopov, V.Kh., Ed., Moscow: Nauka, 2017.Google Scholar
  4. 4.
    Pshikhopov, V.Kh. and Medvedev, M.Yu., Upravlenie podvizhnymi ob”ektami v opredelennykh i neopredelennykh sredakh (Control of Mobile Objects in Deterministic and Uncertain Environments), Moscow: Nauka, 2011.Google Scholar
  5. 5.
    Feixas, M., del Acebo, E., Bekaert, Ph., and Sbert, M., An Information Theory Framework for the Analysis of Scene Complexity, EUROGRAPHICS’ 99, 1999, vol. 18, no. 3.Google Scholar
  6. 6.
    Niepel, L., Martinka, J., Ferko, A., and Elias, P., On Scene Complexity Definition for Rendering, WSCG’95, Plzen, 1995, pp. 209–217.Google Scholar
  7. 7.
    Plemenos, D., Sbert, M., and Feixas, M., On Viewpoint Complexity of 3D Scenes, Int. Conf. Graphicon, 2004, Moscow, Russia. http://www.graphicon.ru/ Google Scholar
  8. 8.
    Rigau, J., Feixas, M., and Sbert, M., Visibility Complexity of a Region in Flatland, EUROGRAPHICS, 2000.Google Scholar
  9. 9.
    Karkishchenko, A.N. and Pshikhopov, V.Kh., On Finding the Complexity of an Environment for the Operation of a Mobile Object on a Plane, Autom. Remote Control, 2019, vol. 80, no. 5, pp. 897–912.CrossRefGoogle Scholar
  10. 10.
    Skvortsov, A.V., Triangulyatsiya Delone i ee primenenie (Delaunay Triangulation and Its Applications), Tomsk: Tomsk. Gos. Univ., 2002.Google Scholar
  11. 11.
    Qu, Y., Zhang, Yi., and Zhang, Yo., A Global Path Planning Algorithm for Fixed-wing UAVs, J. Intell. Robot Syst., 2018, vol. 91, pp. 691–707.CrossRefGoogle Scholar
  12. 12.
    Kim, D. and Sugihara, K., Voronoi Diagram of a Circle Set from Voronoi Diagram of a Point Set: I. Topology, Comput. Aided Geom. Des., 2001, vol. 18, no. 6, pp. 541–562.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Choset, H. and Burdick, J., Sensor-based Exploration: The Hierarchical Generalized Voronoi Graph, Int. J. Robot. Res., 2000, vol. 19, no. 2, pp. 96–125.CrossRefGoogle Scholar
  14. 14.
    Merino, L., Wiklund, J., and Caballero, F., Vision-based Multi-UAV Position Estimation, IEEE Robot. Autom. Mag., 2006, vol. 13, no. 3, pp. 53–62.CrossRefGoogle Scholar
  15. 15.
    Yu, X. and Zhang, Y.M., Sense and Avoid Technologies with Application to Unmanned Aircraft Systems: Review and Prospects, Progress Aeros. Sci., 2015, vol. 74, pp. 152–166.CrossRefGoogle Scholar
  16. 16.
    Borouchaki, H. and Lo, S., Fast Delaunay Triangulation in Three Dimensions, Comput. Methods Appl. Mech. Eng., 1995, vol. 128, pp. 153–167.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nechetkie mnozhestva v modelyakh upravleniya i iskusstvennogo intellekta (Fuzzy Sets in Models of Control and Artificial Intelligence), Pospelov, D.A., Ed., Moscow: Nauka, 1986.Google Scholar
  18. 18.
    Harary, F., Graph Theory, Boston: Addison-Wesley, 1969. Translated under the title Teoriya grafov, Moscow: Mir, 1973.CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Research and Design Bureau for Robotics and Control SystemsTaganrogRussia

Personalised recommendations