Automation and Remote Control

, Volume 80, Issue 8, pp 1455–1470 | Cite as

Dual Forecasting Algorithm for Technological Structural Matrices in Dynamic Input-Output Models

  • P. I. SafonovEmail author
Control in Social Economic Systems


Based on the global Krotov successive improvement method, we propose a dual computational algorithm for a discrete optimal control problem corresponding to a convex large-scale quadratic programming problem with a separable functional that arises in the prediction of the direct costs (structural) matrix in dynamic input-output models. With decomposition, we are able to use a special form of the constraint matrix to reduce the problem dimension.


input-output (intersectoral balance) model direct costs (structural) matrix balanced prediction quadratic programming decomposition Krotov’s dual optimal control method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The studies presented in this work were started while the author was working at the Trapeznikov Institute of Control Sciences (ICS) of the Russian Academy of Sciences in Laboratory 45 under the supervision of Professor Vadim F. Krotov. The author is grateful to his former co-workers Dr. A.G. Aleksandrov, Dr. O.V. Morzhin, and L.A. Selivanova for their help and discussions of the work.


  1. 1.
    Leontief, W.W., Input-Output Economics, New York: Oxford Univ. Press, 1986, 2nd ed.Google Scholar
  2. 2.
    Optimal’noe upravlenie prirodno-ekonomicheskimi sistemami (Optimal Control for Natural-Economic Systems), Gurman, V.I. and Moskalenko, A.I., Eds., Novosibirsk: Nauka, 1980.Google Scholar
  3. 3.
    Krotov, V.F., Investigation of Nonlinear Optimization Models of Growth in a Multisectoral Economy. I–III, Autom. Remote Control, 1981, vol. 42, no. 10, pp. 1385–1391; no. 11, pp. 1524–1531; 1982, vol. 43, no. 1, pp. 91–98.zbMATHGoogle Scholar
  4. 4.
    Ekologo-ekonomicheskaya strategiya razvitiya regiona (Ecological Economic Strategy for Regional Development), Gurman, V.I., Ed., Novosibirsk: Nauka, 1990.Google Scholar
  5. 5.
    Modelirovanie sotsio-ekologo-ekonomicheskoi sistemy regiona (Modeling the Socio-Ecological-Economic System of a Region), Gurman, V.I. and Ryumina, E.V., Eds., Moscow: Nauka, 2003.Google Scholar
  6. 6.
    Proops, J. and Safonov, P., Modeling in Ecological Economics, Cheltenham, United Kingdom: Edward Elgar, 2004.Google Scholar
  7. 7.
    Krotov, V.F., Computational Algorithms for Solving and Optimization of Controllable Systems of Equations I, II, Izv. Akad. Nauk SSSR, Tekh. Kiber., 1975, no. 5, no. 6.Google Scholar
  8. 8.
    Krotov, V.F. and Fel’dman, N.N., Iterative Method for Solving Optimal Control Problems, Izv. Akad. Nauk SSSR, Tekh. Kiber., 1983, no. 2, pp. 160–168.Google Scholar
  9. 9.
    Krotov, V.F., Global Methods in Optimal Control Theory, New York: Marcel Dekker, 1996.zbMATHGoogle Scholar
  10. 10.
    Gurman, V.I., Matveev, G.A., and Trushkova, E.A., Socio-Ecological-Economic Model of a Region in Parallel Computations, Upravlen. Bol’shimi Sist. 2011, no. 32, pp. 109–130.Google Scholar
  11. 11.
    Rasina, I.V., Blinov, A.O., and Guseva, I.S., Magistrals in the Regional Development Strategy Optimization Problem for a Multicomponent Model, Vestn. Buryat. Gos. Univ., Ser. 9, Mat. Informat., 2011, pp. 36–42.Google Scholar
  12. 12.
    Safonov, P.I., Forecasting Algorithm for Direct Costs in the Dynamic Intersectoral Balance Model, in Vopr. Sozdaniya ASPR. Primenenie Ekonomiko-Matematicheskikh Metodov v Perspektivnom Planirovanii. Sb. Nauchn. Tr. GVTs Gosplana SSSR (Problems of the Development of Automated Planning Systems. Using Economico-Mathematical Methods in Prospective Planning), Moscow, 1988, no. 87, pp. 118–138.Google Scholar
  13. 13.
    Nikolaeva, I.G. and Novikova, T.A., Statistical Forecasting Method for Direct Costs, in Prikladnye zadachi ekonomicheskogo modelirovaniya (Applied Economic Modeling Problems), Moscow: VNIISI, 1984, no. 13.Google Scholar
  14. 14.
    Nikolaeva, I.G., Analiz i prognoz mezhotraslevykh svyazei (Analysis and Forecasting of Intersectoral Connections), Moscow: Ekonomika, 1981.Google Scholar
  15. 15.
    Stone, R. and Brown, J.A.C., A Long-Term Growth Model of the British Economy, Eur. Future Figures, Amsterdam, 1962.Google Scholar
  16. 16.
    Sedelev, B.V. and Zhuravleva, L.V., A Balanced Forecast of Structural-Dynamic Components of Macroeconomic Processes. Applied Economical Modeling Problems, Tr. VNIISI, Moscow, 1984, no. 13, pp. 87–95.Google Scholar
  17. 17.
    Lyashenko, I.N. et al., Agregirovanie i dekompozitsiya v modelyakh narodnokhozyaistvennogo planirovaniya (Aggregation and Decomposition in Models of National Economic Planning), Kiev: Znanie, 1980.Google Scholar
  18. 18.
    Ovseenko, O.A. and Shemyakina, T.Yu., Metody dekompozitsii processov upravleniya (Decomposition Methods for Control Processes), Moscow: MIU, 1986.Google Scholar
  19. 19.
    Gol’shtein, E.G., A Method of Decomposition for Problems of Linear and Convex Programming, Ekon. Mat. Met., Moscow, 1985, no. 6, vol. 21.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.St. Cloud State UniversitySt. CloudUSA

Personalised recommendations