Advertisement

Automation and Remote Control

, Volume 80, Issue 8, pp 1437–1454 | Cite as

Optimal Rotation of the Orbit Plane of a Variable Mass Spacecraft in the Central Gravitational Field by Means of Orthogonal Thrust

  • Ya. G. Sapunkov
  • Yu. N. ChelnokovEmail author
Control in Technical Systems
  • 2 Downloads

Abstract

With the use of quaternions and the maximum principle, we solve the optimal orbit transfer problem for a variable-mass spacecraft to a given plane in a nonlinear setting. The motion control of the spacecraft is carried out with the help of a jet thrust, bounded in absolute value and orthogonal to the plane of the osculating spacecraft orbit. We take into account the change in mass of the spacecraft due to the consumption of the working fluid in the control process. The functional that determines the quality of the control process is a linear convolution with weight factors for two criteria: time and total thrust impulse spent on the control process.

We provide an exposition of the theory of the problem’s solution. We show results of optimal control calculations for cases when both criteria are simultaneously taken into account in the minimized combined quality functional of the control process, and for cases when only the total thrust impulse is minimized. We obtain examples of optimal control with up to 192 passive and active stages. We also establish optimal control laws for the rotation of the spacecraft’s orbital plane.

Keywords

spacecraft orientation of the orbit and orbital plane limited (small) thrust optimal control quaternions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, project no. 19-01-00205.

References

  1. 1.
    Duboshin, G.N., Nebesnaya mekhanika. Osnovnye zadachi i metody (Celestial Mechanics. Main Problems and Methods), Moscow: Nauka, 1968.Google Scholar
  2. 2.
    Abalakin, V.K., Aksenov, E.P., Grebennikov, E.A., et al., Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike (Handbook of Celestial Mechanics and Astrodynamics), Moscow: Nauka, 1976.Google Scholar
  3. 3.
    Kopnin, Yu.M., On the Problem of Orbit Plane Rotation for a Satellite, Kosm. Issled., 1965, vol. 3, no. 4, pp. 22–30.Google Scholar
  4. 4.
    Lebedev, V.N., Raschet dvizheniya kosmicheskogo apparata s maloi tyagoi (Computation of a Low Thrust Spacecraft Motion), Moscow: Vychisl. Tsentr Akad. Nauk SSSR, 1968.Google Scholar
  5. 5.
    Borshchevskii, M.Z. and Ioslovich, M.V., On the Satellite Orbit Rotation Problem with Jet Thrust, Kosm. Issled., 1969, vol. 7, no. 6, pp. 8–15.Google Scholar
  6. 6.
    Grodzovskii, G.L., Ivanov, Yu.N., and Tokarev, V.V., Mekhanika kosmicheskogo poleta. Problemy optimizatsii (Mechanics of a Space Flight. Optimization Problems), Moscow: Nauka, 1975.Google Scholar
  7. 7.
    Okhotsimskii, D.E. and Sikharulidze, Yu.G., Osnovy mekhaniki kosmicheskogo poleta (Foundations of Space Flight Mechanics), Moscow: Nauka, 1990.Google Scholar
  8. 8.
    Ishkov, S.A. and Romanenko, V.A., Construction and Correction of a High-Ellipse Orbit for an Earth Satellite with a Low Thrust Engine, Kosm. Issled., 1997, vol. 35, no.3, pp. 287–296.Google Scholar
  9. 9.
    Ivanov, N.M. and Lysenko, L.N., Ballistika i navigatsiya kosmicheskikh apparatov (Ballistics and Navigation of Spacecraft), Moscow: Drofa, 2004.Google Scholar
  10. 10.
    Chernyavskii, G.M., Bartenev, V.A., and Malyshev, V.A., Upravlenie orbitoi statsionarnogo sputnika (Control over the Orbit of a Stationary Satellite), Moscow: Mashinostroenie, 1984.Google Scholar
  11. 11.
    Reshetnev, M.F., Lebedev, A.A., Bartenev, V.A., et al., Upravlenie i navigatsiya iskusstvennykh sputnikov Zemli na okolokrugovykh orbitakh (Control and Navigation of Man-Made Earth Satellites on Near-Round Orbits), Moscow: Mashinostroenie, 1988.Google Scholar
  12. 12.
    Bartenev, V., Malyshev, V., Rayevsky, V., et al., Altitude and Orbit Control Systems of Russian Communication, Geodesic and Navigation Spacecraft, Space Technol., 1999, vol. 19, no. 3–4, pp. 135–147.Google Scholar
  13. 13.
    Testoyedov, N., Rayevsky, V., Somov, Ye., et al., Altitude and Orbit Control Systems of Russian Communication, Navigation and Geodesic Satellites: History, Present and Future, IFAC PapersOnLine, 2017, vol. 50, no. 1, pp. 6422–6427.CrossRefGoogle Scholar
  14. 14.
    Battin, R.H., An Introduction to the Mathematics and Methods of Astrodynamics, New York: AIAA, 1987.zbMATHGoogle Scholar
  15. 15.
    Huntington, G.T. and Rao, A.V., Optimal Reconfiguration of a Tetrahedral Formation via a Gauss Pseudospectral Method, Proc. AAS/AIAA Astrodynam. Special. Conf., AS 05-338, 2005, pp. 1–22.Google Scholar
  16. 16.
    Chelnokov, Yu.N., Applications of Quaternions in the Theory of Orbital Motion of a Man-Made Satellite. Part 2, Kosm. Issled., 1993, vol. 31, no. 3, pp 3–15.Google Scholar
  17. 17.
    Chelnokov, Yu.N., Kvaternionnye i bikvaternionnye modeli i metody mekhaniki tverdogo tela i ikh prilozheniya. Geometriya i kinematika dvizheniya (Quaternion and Biquaternion Models and Methods of Solid Body Mechanics and Their Applications), Moscow: Fizmatlit, 2006.Google Scholar
  18. 18.
    Chelnokov, Yu.N., Kvaternionnye modeli i metody dinamiki, navigatsii i upravleniya dvizheniem (Quaternion Models and Methods for Dynamics, Navigation, and Motion Control), Moscow: Fizmatlit, 2011.Google Scholar
  19. 19.
    Chelnokov, Yu.N., Optimal Reorientation of a Spacecraft Orbit with Jet Thrust Orthogonal to the Orbit Plane, Prikl. Mat. Mekh., 2012, vol. 76, no. 6, pp. 897–914.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Chelnokov, Yu.N., Quaternion Regularization in Celestial Mechanics and Astrodynamics and Control over Trajectory Motion. II, Kosm. Issled., 2014, vol. 52, no. 4, pp. 322–336.Google Scholar
  21. 21.
    Sergeev, D.A. and Chelnokov, Yu.N., Optimal Control over the Orientation of a Spacecraft Orbit, in Mat. Mekh., Sb. Nauchn. Tr., Saratov: Saratov Univ., 2001, no. 3, pp. 185–188.Google Scholar
  22. 22.
    Pankratov, I.A., Sapunkov, Ya.G., and Chelnokov, Yu.N., On One Problem of Optimal Reorientation of a Spacecraft Orbit, Izv. Sarat. Univ., Nov. Ser., Ser. Mat. Mekh. Informat., 2012, vol. 12, no. 3, pp. 87–95.zbMATHGoogle Scholar
  23. 23.
    Sapunkov, Ya.G. and Chelnokov, Yu.N., A Study of the Optimal Reorientation Problem for a Spacecraft Orbit Via Bounded or Impulse Jet Thrust Orthogonal to the Orbit Plane. Part 1, Mekhatron., Avtomatiz., Upravlen., 2016, vol. 17, no. 8, pp. 567–575.CrossRefGoogle Scholar
  24. 24.
    Sapunkov, Ya.G. and Chelnokov, Yu.N., A Study of the Optimal Reorientation Problem for a Spacecraft Orbit Via Bounded or Impulse Jet Thrust Orthogonal to the Orbit Plane. Part 2, Mekhatron., Avtomatiz., Upravlen., 2016, vol. 17, no. 9, pp. 633–643.CrossRefGoogle Scholar
  25. 25.
    Deprit, A., Ideal Frames for Perturbed Keplerian Motions, Celestial Mechan., 1976, vol. 13, no. 2, pp. 253–263.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Brumberg, V.A., Analiticheskie algoritmy nebesnoi mekhaniki (Analytic Algorithms in Celestial Mechanics), Moscow: Nauka, 1980.Google Scholar
  27. 27.
    Branets, V.N. and Shmyglevskii, I.P., Primenenie kvaternionov v zadachakh orientatsii tverdogo tela (Applications of Quaternions to Solid Body Orientation Problems), Moscow: Nauka, 1973.Google Scholar
  28. 28.
    Branec, V.N. and Shmyglevskii, I.P., Vvedenie v teoriyu besplatformennykh inertsial’nykh navigatsionnykh sistem (Introduction to the Theory of Platform-Free Inertial Navigation Systems), Moscow: Nauka, 1992.Google Scholar
  29. 29.
    Chelnokov, Yu.N., Optimal Reorientation of a Spacecraft Orbit via Jet Thrust Orthogonal to the Orbit Plane, in Mat. Mekhan., Sb. Nauchn. Tr., Saratov: Saratov Univ., 2006, no. 8, pp. 231–234.Google Scholar
  30. 30.
    Pankratov, I.A., Sapunkov, Ya.G., and Chelnokov, Yu.N., Solving the Optimal Reorientation Problem for a Spacecraft Orbit with Quatertion Equations on the Orientation of the Orbital Coordinate Systems, Izv. Sarat. Univ., Nov. Ser., Ser. Mat. Mekh. Informat., 2013, vol. 13, no. 1-1, pp. 84–92.zbMATHGoogle Scholar
  31. 31.
    Il’in, V.A. and Kuzmak, G.E., Optimal’nye perelety kosmicheskikh apparatov s dvigatelyami bol’shoi tyagi (Optimal Motions of Spacecraft with High Thrust Engines), Moscow: Nauka, 1976.Google Scholar
  32. 32.
    Moiseev, N.N., Elementy teorii optimal’nykh sistem (Elements of the Theory of Optimal Systems), Moscow: Nauka, 1975.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Precision Mechanics and ControlRussian Academy of SciencesSaratovRussia

Personalised recommendations