Advertisement

Automation and Remote Control

, Volume 80, Issue 8, pp 1390–1402 | Cite as

Optimization of Bilinear Control Systems Subjected to Exogenous Disturbances. II. Design

  • M. V. KhlebnikovEmail author
Nonlinear Systems
  • 3 Downloads

Abstract

We obtain and discuss new results related to control design for bilinear systems subjected to arbitrary bounded exogenous disturbances. A procedure for the construction of the stabilizability ellipsoid and the domain of stabilizability for bilinear control systems is proposed and its efficiency is proved. This problem is solved both in continuous and discrete time. The main tool is the linear matrix inequality technique. This simple yet general approach is of great potential and can be widely generalized; for instance, to various robust statements of the problem.

Keywords

bilinear control systems exogenous bounded disturbances quadratic Lyapunov functions linear feedback stabilizability ellipsoid domain of stabilizability linear matrix inequalities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was partially supported by the Russian Foundation for Basic Research, project no. 18-08-00140. The author would like to thank B.T. Polyak for his interest in this work, fruitful discussions, and useful suggestions.

References

  1. 1.
    Mohler, R.R., Bilinear Control Processes, New York: Academic, 1973.zbMATHGoogle Scholar
  2. 2.
    Ryan, E. and Buckingham, N., On Asymptotically Stabilizing Feedback Control of Bilinear Systems, IEEE Trans. Autom. Control, 1983, 28, 8, pp. 863–864.CrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, L.K., Yang, X., and Mohler, R.R., Stability Analysis of Bilinear Systems, IEEE Trans. Autom. Control, 1991, 36, 11, pp. 1310–1315.CrossRefGoogle Scholar
  4. 4.
    Čelikovský, S., On the Global Linearization of Bilinear Systems, Syst. Control Lett., 1990, 15, 5, pp. 433–439.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Čelikovský, S., On the Stabilization of the Homogeneous Bilinear Systems, Syst. Control Lett., 1993, 21, 6, pp. 503–510.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Tibken, B., Hofer, E.P., and Sigmund, A., The Ellipsoid Method for Systematic Bilinear Observer Design, Proc. 13th IFAC World Congr., San Francisco, USA, June–July 1996, pp. 377–382.Google Scholar
  7. 7.
    Korovin, S.K. and Fomichev, V.V., Asymptotic Observers for Some Classes of Bilinear Systems with Linear Input, Dokl. Math., Control Theory, 2004, vol. 398, no 1, pp. 38–43.Google Scholar
  8. 8.
    Belozyorov, V.Y., Design of Linear Feedback for Bilinear Control Systems, Int. J. Appl. Math. Comput. Sci., 2002, 11, 2, pp. 493–511.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Belozyorov, V.Y., On Stability Cones for Quadratic Systems of Differential Equations, J. Dynam. Control Syst., 2005, 11, 3, pp. 329–351.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Andrieu, V. and Tarbouriech, S., Global Asymptotic Stabilization for a Class of Bilinear Systems by Hybrid Output Feedback, IEEE Trans. Autom. Control, 2013, 58, 6, pp. 1602–1608.CrossRefzbMATHGoogle Scholar
  11. 11.
    Coutinho, D. and de Souza, C.E., Nonlinear State Feedback Design with a Guaranteed Stability Domain for Locally Stabilizable Unstable Quadratic Systems, IEEE Trans. Circuits Syst. I. Regular Papers, 2012, 59, 2, pp. 360–370.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Omran, H., Hetel, L., Richard, J.-P., et al., Stability Analysis of Bilinear Systems under Aperiodic Sampled-Data Control, Automatica, 2014, vol. 50, no. 4, pp. 1288–1295.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kung, C.-C., Chen, T.-H., Chen W.-C., et al., Quasi-Sliding Mode Control for a Class of Multivariable Discrete Time Bilinear Systems, Proc. 2012 IEEE Int. Conf. Syst., Man, Cybernet., Seoul, Korea, October 2012, pp. 1878–1883.Google Scholar
  14. 14.
    Athanasopoulos, N. and Bitsoris, G., Constrained Stabilization of Bilinear Discrete-Time Systems Using Polyhedral Lyapunov Functions, Proc. 17th IFAC World Congr., Seoul, Korea, July 6–11, 2008, pp. 2502–2507.Google Scholar
  15. 15.
    Athanasopoulos, N. and Bitsoris, G., Stability Analysis and Control of Bilinear Discrete-Time Systems: A Dual Approach, Proc. 18th IFAC World Congr., Milan, Italy, August 28–September 2, 2011, pp. 6443–6448.Google Scholar
  16. 16.
    Tarbouriech, S., Queinnec, I., Calliero T.R., et al., Control Design for Bilinear Systems with a Guaranteed Region of Stability: An LMI-Based Approach, Proc. 17th Mediterran. Conf. Control Autom., Thessaloniki, Greece, June 2009, pp. 809–814.Google Scholar
  17. 17.
    Amato, F., Cosentino, C., and Merola, A., Stabilization of Bilinear Systems via Linear State Feedback Control, IEEE Trans. Circuits Syst. II. Express Briefs, 2009, 56, 1, pp. 76–80.CrossRefGoogle Scholar
  18. 18.
    Boyd, S., El Ghaoui, L., Feron, E., et al., Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.CrossRefzbMATHGoogle Scholar
  19. 19.
    Polyak, B.T., Khlebnikov, M.V, and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems Subject to Exogenous Disturbances: The Linear Matrix Inequalitiy Technique), Moscow: LENAND, 2014.Google Scholar
  20. 20.
    Khlebnikov, M.V., Quadratic Stabilization of Bilinear Control Systems, Proc. 14th Eur. Control Conf., Linz, Austria, July 15–17, 2015. IEEE Catalog Number(USB): CFP1590U-USB, pp. 160–164.Google Scholar
  21. 21.
    Khlebnikov, M.V., Quadratic Stabilization of Bilinear Control Systems, Autom. Remote Control, 2016, vol. 77, no. 6, pp. 980–991.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Khlebnikov, M.V., Quadratic Stabilization of Discrete-Time Bilinear Control Systems, Proc. 14th Eur. Control Conf., Limassol, Cyprus, June 12–15, 2018, IEEE Catalog Number(USB): CFP1890U-USB, pp. 201–205.Google Scholar
  23. 23.
    Bulgakov, B.V., On Accumulation of Perturbations in the Linear Oscillatory Systems with Constant Parameters, Dokl. Akad. Nauk SSSR, 1946, 5, 5, pp. 339–342.Google Scholar
  24. 24.
    Gnoenskii, L.S., Bulgakov’s Problem of Accumulation of Perturbations, in Zadacha Bulgakova o maksimal’nom otklonenii i ee primenenie (Maximum Deviation Problem by Bulgakov and Its Applications), Aleksandrov, V.V., Ed., Moscow: Mosk. Gos. Univ., 1993, pp. 7–29.Google Scholar
  25. 25.
    Zhermolenko, V.N., Maximum Deviation of Oscillating System of the Second Order with External and Parametric Disturbances, J. Comput. Syst. Sci. Int., 2007, 46, 3, pp. 407–412.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Khlebnikov, M.V., Optimization of Bilinear Control Systems Subjected to Exogenous Disturbances: I. Analysis, Autom. Remote Control, 2019, vol. 80, no. 2, pp. 234–249.CrossRefGoogle Scholar
  27. 27.
    Hofer, E.P., Nonlinear and Bilinear Models for Chemical Reactor Control, Math. Model., 1987, vol. 8, pp. 406–411.CrossRefGoogle Scholar
  28. 28.
    Kang, D., Won, S., and Jang, Y.J., Guaranteed Cost Control for Bilinear Systems by Static Output Feedback, Appl. Math. Comput., 2013, 219, 14, pp. 7398–7405.MathSciNetzbMATHGoogle Scholar
  29. 29.
    Grant, M. and Boyd, S., CVX: Matlab Software for Disciplined Convex Programming, version 2.0 beta. http://cvxr.com/cvx, September 2013.Google Scholar
  30. 30.
    Grant, M. and Boyd, S., Graph Implementations for Nonsmooth Convex Programs, in Recent Advances in Learning and Control (A tribute to M. Vidyasagar), Blondel, V., Boyd, S., and Kimura, H., Eds, Springer, 2008, pp. 95–110. http://stanford.edu/~boyd/graph-dcp.html CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations