Advertisement

Automation and Remote Control

, Volume 80, Issue 8, pp 1375–1389 | Cite as

Switched Systems, Lur’e Systems, Absolute Stability, Aizerman Problem

  • V. A. KamenetskiyEmail author
Nonlinear Systems

Abstract

We distinguish a subclass of switched linear systems that we call pairwise connected. We show that the dynamics of such systems can be described by Lur’e systems. For pairwise connected systems, we obtain a sufficient frequency-domain condition for the existence of a quadratic Lyapunov function. The well-known Aizerman problem is reformulated for switched linear systems. We show an example of a system with switchings between three linear third order subsystems for which Aizerman’s problem has a positive solution.

Keywords

switched systems Lur’e systems stability Aizerman problem Lyapunov functions matrix inequalities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Program of the Presidium of the Russian Academy of Sciences “Modern Problems of Robotics,” project no. I.29.

References

  1. 1.
    Lur’e, A.I. and Postnikov, V.N., On Stability Theory for Controllable Systems, Prikl. Mat. Mekh., 1944, vol. 8, no. 3, pp. 246–248.zbMATHGoogle Scholar
  2. 2.
    Liberzon, M.R., Essays on the Absolute Stability Theory, Autom. Remote Control, 2006, vol. 67, no. 10, pp. 1610–1644.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aizerman, M.A., On One Problem Related to Stability “At Large” for Dynamical Systems, Usp. Mat. Nauk, 1949, vol. 14, no. 4(32), pp. 187–188.Google Scholar
  4. 4.
    Pliss, V.A., Nekotorye problemy teorii ustoichivosti dvizheniya v tselom (Some Problems of Stability Theory for Motion as a Whole), Leningrad: Leningr. Gos. Univ., 1958.Google Scholar
  5. 5.
    Barabanov, N.E., On the Aizerman Problem for Nonstationary Third Order Systems, Differ. Uravn., 1993, vol. 29, no. 10, pp. 1659–1668.Google Scholar
  6. 6.
    Pyatnitskii, E.S., The Work of M.A. Aizerman on Control Theory, Motion Stability Theory, and Oscillation Theory, in Mark Aronovich Aizerman (1918–1992), Moscow: Fizmatlit, 2003, pp. 82–104.Google Scholar
  7. 7.
    Aizerman, M.A. and Gantmakher, F.R., Absolyutnaya ustoichivost’ nelineinykh reguliruemykh sistem (Absolute Stability of Nonlinear Controllable Systems), Moscow: Akad. Nauk, 1963.Google Scholar
  8. 8.
    Jayawardhana, B., Logemann, H., and Ryan, E.P., The Circle Criterion and Input-to-State Stability: New Perspectives on a Classical Result, IEEE Control Syst. Mag., 2011, vol. 31, no. 4, pp. 32–67.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Shorten, R., Wirth, F., Mason, O., et al., Stability Sriteria for Switched and Hybrid Systems, SIAM Rev., 2007, no. 4, pp. 545–592.CrossRefzbMATHGoogle Scholar
  10. 10.
    Duignan, R. and Curran, P.F., An Investigation on the Absolute Stability of Discrete and Continuous Time Lur’e Systems, 2007 Int. Symp. Nonlinear Theory Appl. NOLTA’07, Vancouver, Canada, September 16–19, 2007, pp. 349–352.Google Scholar
  11. 11.
    Valmorbida, G., Drummond, R., and Duncan, S.R., Regional Analysis of Slope-Restricted Lurie Systems, IEEE Trans. Autom. Control, 2019, vol. 64, no. 3, pp. 1201–1208.CrossRefzbMATHGoogle Scholar
  12. 12.
    Yakubovich, V.A., Absolute Instability of Nonlinear Control Systems. II, Autom. Remote Control, 1971, vol. 32, no. 6, part 1, pp. 876–884.zbMATHGoogle Scholar
  13. 13.
    Kamenetskii, V.A., Absolute Stability and Absolute Instability of Control Systems with Several Nonlinear Nonstationary Elements, Autom. Remote Control, 1983, vol. 44, no. 12, pp. 1543–1552.MathSciNetGoogle Scholar
  14. 14.
    Liberzon, D., Switching in Systems and Control, Boston: Birkhäuser, 2003.CrossRefzbMATHGoogle Scholar
  15. 15.
    Molchanov, A.P. and Pyatnitskii, E.S., Absolute Instability of Nonlinear Nonstationary Systems. I, II, Autom. Remote Control, 1982, vol. 43, no. 1, part 1, pp. 13–20; no. 2, part 1, pp. 147–157.Google Scholar
  16. 16.
    Molchanov, A.P. and Pyatnitskii, E.S., Lyapunov Functions that Specify Necessary and Sufficient Conditions of Absolute Stability of Nonlinear Nonstationary Control Systems. I, Autom. Remote Control, 1986, vol. 47, no. 3, part 1, pp. 344–354.zbMATHGoogle Scholar
  17. 17.
    Kamenetskii, V.A. and Pyatnitskii, E.S., Gradient Method of Constructing Lyapunov Functions in Problems of Absolute Stability, Autom. Remote Control, 1987, vol. 48, no. 1, part 1, pp. 1–9.Google Scholar
  18. 18.
    Kamenetskiy, V.A., Frequency-Domain Stability Conditions for Hybrid Systems, Autom. Remote Control, 2017, 78, 12, pp. 2101–2119.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shorten, R.S. and Narendra, K.S., On Common Quadratic Lyapunov Functions for Pairs of Stable LTI Systems whose System Matrices are in Companion Form, IEEE Trans. Autom. Control, 2003, 48, 4, pp. 618–621.CrossRefzbMATHGoogle Scholar
  20. 20.
    Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with a Non-Unique Equilibrium State), Moscow: Nauka, 1978.Google Scholar
  21. 21.
    Kamenetskiy, V.A., Frequency-Domain Stability Conditions for Discrete-Time Switched Systems, Autom. Remote Control, 2018, 79, 8, pp. 13711–1389.Google Scholar
  22. 22.
    Anan’evskii, I.M., Anokhin, N.V., and Ovseevich, A.I., General Lyapunov Function in the Control Synthesis Problem for Linear Dynamical Systems, in Problemy ustoichivosti i upravleniya. Sb. nauch. st., posv. 80-letiyu akad. V.M. Matrosova (Problems of Stability and Control. CollectedWorks in Honor of the 80th Birthday of Acad. V.M. Matrosov), Moscow: Fizmatlit, 2013, pp. 91–103.Google Scholar
  23. 23.
    Filippov, A.F., On Some Problems in Optimal Control Theory, Vest. MGU, Ser. Matem., Mekh., Astron., Phiz. Khim., 1959, no. 2, pp. 25–32.Google Scholar
  24. 24.
    Pyatnitskii, E.S. and Skorodinskii, V.I., Numerical Method of Construction of Lyapunov Functions and Absolute Stability Criteria in the Form of Numerical Procedures, Autom. Remote Control, 1983, 44, 11, part 1, pp. 1427–1437.MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations