Advertisement

Automation and Remote Control

, Volume 80, Issue 7, pp 1304–1316 | Cite as

Mathematical Models of Modified Crypto-Code Means of Information Protection Based on Coding Theory Schemes

  • Kh. N. RzaevEmail author
Optimization, System Analysis, and Operations Research

Abstract

We develop mathematical models of modified crypto-code means of information protection based on the McEliece coding theory scheme using algebro-geometric block codes with shortening and extending of the information package, analyze the security and power costs of their software implementation.

Keywords

modified crypto-code systems coding theory schemes algebro-geometric codes information security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    NISTIR 8105, Report on Post-Quantum Cryptography.  https://doi.org/10.6028/NIST.IR.8105
  2. 2.
    Dinh, H., Moore, C., and Russell, A., McEliece and Niederreiter Cryptosystems That Resist Quantum Fourier Sampling Attacks. https://dl.acm.org/citation.cfm?id=2033093
  3. 3.
    de Vries, S., Achieving 128-Bit Security against Quantum Attacks in OpenVPN, 2016, pp. 1–16. https://essay.utwente.nl/.../2016-08-09%20msc%20thesis%Google Scholar
  4. 4.
    Baldi, M., Bianchi, M., Chiaraluce, F., et al., Enhanced Public Key Security for the McEliece Cryptosystem. https://arxiv.org/abs/1108.2462
  5. 5.
    Rossi, M., Hamburg, M., Hutter, M., and Marson, M.E., A Side-Channel Assisted Cryptanalytic Attack Against QcBits. https://link.springer.com/chapter/10.1007/978-3-319-66787-41
  6. 6.
    Grischuk, R.V. and Danik, Yu.G., Osnovi kiberbezpeki (Fundamentals of Cybersecurity), Danik, Yu.G., Ed., Zhitomir: ZHNAEU, 2016.Google Scholar
  7. 7.
    Evseev, S., A Methodology for Security Evaluation of Information Technologies of Automated Banking Systems in Ukraine, Bezpeka Informatsiï, 2016, vol. 22, no. 3, pp. 297–309.MathSciNetGoogle Scholar
  8. 8.
    Zhang, G., Cai, S., Ma, C., and Zhang, D., Secure Error-Sorrecting (SEC) Schemes for Network Coding Through McEliece Cryptosystem. https://link.springer.com/article/10.1007/S10586-017-1294-5
  9. 9.
    Zhang, G., Cai, S., Ma, C., and Zhang, D., Universal Secure Error-Correcting (SEC) Schemes for Network Coding via McEliece Cryptosystem Based on QC-LDPC Codes. https://link.springer.com/article/10.1007/s10586-017-1354-x
  10. 10.
    Cho, J.Y., Griesser, H., and Rafique, D., A McEliece-Based Key Exchange Protocol for Optical Communication Systems. https://link.springer.com/chapter/10.1007%2f978-3-319-59265-78
  11. 11.
    Morozov, K., Roy, P.S., and Sakurai, K., On Unconditionally Binding Code-Based Commitment Schemes. https://dl.acm.org/citation.cfm?id=3022327&dl=ACM&coll=DL
  12. 12.
    Sidel’nikov, V.M., On an Encoding System Based on Generalized Reed-Solomon Codes, Diskret. Mat., 1992, vol. 4, no. 3, pp. 57–63.Google Scholar
  13. 13.
    Sidel’nikov, V.M., Cryptography and Coding Theory, Proc. of the Conf. “Moscow Univ. and the Development of Cryptography in Russia,” Moscow: Mosk. Gos. Univ., 2002, pp. 1–22.Google Scholar
  14. 14.
    Rzaev, Kh.N., Developing a Modified Asymmetric Crypto-Code McEliece System on Shortened Elliptic Codes, Vostochno-Evr. Zh. Peredovykh Tekhnol., 2016, vol. 4, no. 9 (82), pp. 18–26.Google Scholar
  15. 15.
    Rzaev, Kh.N. and Tsyganenko, A.S., Analysis of Software Implementation for the Method of Non-Binary Equilibrium Coding, Az erbaycan Texniki Universiteti, Elmi es erl er, 2016, vol. 1, no. 1, pp. 107–112, ISSN 1815-1779.Google Scholar
  16. 16.
    Blahut, R.E., Theory and Practice of Error Control Codes, Reading: Addison-Wesley, 1983. Translated under the title Teoriya i praktika kodov, kontroliruyushchikh oshibki, Moscow: Mir, 1986.zbMATHGoogle Scholar
  17. 17.
    Clark, G.C., Jr. and Cain, J.B., Error-Correction Coding for Digital Communications, New York: Plenum, 1981. Translated under the title Kodirovanie s ispravleniem oshibok v sistemakh tsifrovoi svyazi, Moscow: Radio i Svyaz’, 1987.CrossRefzbMATHGoogle Scholar
  18. 18.
    McWilliams, F.J. and Sloan, N.J., The Theory of Error-correcting Codes, Amsterdam: North Holland, 1977. Translated under the title Teoriya kodov ispravlyayushchikh oshibki, Moscow: Svyaz’, 1979.Google Scholar
  19. 19.
    Muter, V.M., Osnovy pomekhoustoichivoi teleperedachi informatsii (Fundamentals of Fault-Tolerant Teletransmission of Information), Leningrad: Energoatomizdat, 1990.Google Scholar
  20. 20.
    Kasami, T., Tokura, N., Ivadari, E., and Inagaki, Ya., Teoriya kodirovaniya (Coding Theory). Translated from Japanese, Tsybakov, B.S. and Gel’fand, S.I., Eds., Moscow: Mir, 1978.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Azerbaijan State University of Oil and IndustryBakuAzerbaijan

Personalised recommendations