Automation and Remote Control

, Volume 80, Issue 7, pp 1294–1303 | Cite as

Analysis of the Sensitivity of Solutions of Multi-Criteria Problems Based on Parametric Partial Preference Relations

  • V. V. PodinovskiEmail author
  • M. A. PotapovEmail author
Optimization, System Analysis, and Operations Research


We give a survey of approaches for analyzing the sensitivity of non-dominated alternatives to changes in the parameters of partial quasi-orderings that define preferences. Such parameters can include values of importance coefficients for different criteria or boundaries of interval estimates of the degrees of superiority in the importance of some criteria over others, boundaries of intervals of criteria value tradeoffs uncertainty and others.


multi-criteria decision making problems partial quasi-orders sensitivity analysis criteria importance theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was conducted with state support of the leading universities of the Russian Federation “5-100” and the State Research Program of the Institute of Computer-Aided Design of the RAS. The authors are grateful to the referee for useful comments that have helped improve the presentation of this work.


  1. 1.
  2. 2.
    Handbook of Sensitivity Analysis, Saltelli, A., Chan, K., and Scott, M., Eds., New York: Wiley, 2009.Google Scholar
  3. 3.
    Ashmanov, S.A., Lineinoe programmirovanie (Linear Programming), Moscow: Fizmatlit, 1981.Google Scholar
  4. 4.
    Gal, T. and Greenberg, H.J., Advances in Sensitivity Analysis and Parametric Programming, New York: Kluwer, 1997.CrossRefzbMATHGoogle Scholar
  5. 5.
    Rios-Insua, D. and French, S., A Framework for Sensitivity Analysis in Discrete Multi-Objective Decision-Making, Eur. J. Oper. Res., 1991, vol. 54, pp. 176–190.CrossRefzbMATHGoogle Scholar
  6. 6.
    Wolters, W.T.M. and Mareschal, B., Novel Types of Sensitivity Analysis for Additive MCDM Methods, Eur. J. Oper. Res., 1995, vol. 81, pp. 281–290.CrossRefzbMATHGoogle Scholar
  7. 7.
    French, S., Mathematical Programming Approaches to Sensitivity Calculations in Decision Analysis, J. Oper. Res. Soc, 1992, vol. 43, pp. 813–819.CrossRefzbMATHGoogle Scholar
  8. 8.
    Triantaphyllou, E. and Sanchez, A., A Sensitivity Analysis Approach for Some Deterministic Multi-Criteria Decision Making Methods, Decision Sci., 1997, vol. 28, pp. 151–194.CrossRefGoogle Scholar
  9. 9.
    Erkut, E. and Tarimcilar, M., On Sensitivity Analysis in the Analytic Hierarchy Process, IMA J. Manage. Math., 1991, vol. 3, pp. 61–83.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Triantaphyllou, E., Sensitivity Analysis Approach for MCDM Methods, Ch. 8, Multi-Criteria Decision Making Method: A Comparative Study, New York: Kluver, 2000.CrossRefzbMATHGoogle Scholar
  11. 11.
    Huang, Y.-F., Enhancement on Sensitivity Analysis of Priority in Analytic Hierarchy Process, Int. J. General Syst., 2002, vol. 31, pp. 531–542.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Delgado, M.G. and Sendra, J.B., Sensitivity Analysis in Multicriteria Spatial Decision-Making: A Review, Human Ecologic. Risk Assesment, 2004, vol. 10, pp. 1173–1187.CrossRefGoogle Scholar
  13. 13.
    May, J.H., Shang, J., Tjader, Y.C., and Vargas, L.G., A New Methodology for Sensitivity and Stability Analysis of Analytic Network Models, Eur. J. Oper. Res., 2013, vol. 224, pp. 180–188.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Genc, T., Sensitivity Analysis on PROMETHEE and TOPSIS Weights, Int. J. Manage. Decision Making, 2014, vol. 13, pp. 403–421.CrossRefGoogle Scholar
  15. 15.
    Doan, N.A.V. and De Smet, Y., An Alternative Weight Sensitivity Analysis for PROMETHEE II Rankings, Omega, 2018, vol. 80, pp. 166–174.CrossRefGoogle Scholar
  16. 16.
    Vetschera, R., Sensitivity Analysis for the ELECTRE Multicriteria Method, Zeitschrift Oper. Res., 1986, vol. 30, no. 4, pp. B99–B117.zbMATHGoogle Scholar
  17. 17.
    Tervonen, T., Figueira, J.R., Lahdelma, R., and Salminen, P., SMAA-III. A Simulation-Based Approach for Sensitivity Analysis of ELECTRE III, in Real-Time and Deliberative Decision Making: Application to Emerging Stressors, Linkov, I., Ferguson, E., and Magar, V.S., Eds., New York: Springer, 2008, pp. 241–253.Google Scholar
  18. 18.
    Pamucar, D.S., Bozanic, D., and Randelovic, A., Multi-Criteria Decision Making: An Example of Sensitivity Analysis, Serb. J. Manage., 2017, vol. 12, no. 1, pp. 1–27.CrossRefGoogle Scholar
  19. 19.
    Sitarz, S., Approaches to Sensitivity Analysis in MOLP, Int. J. Inform. Technol. Comput. Sci, 2014, no. 03, pp. 54–60.CrossRefGoogle Scholar
  20. 20.
    Podinovski, V.V., Analyzing the Stability of Choice for the Partial Preference Relation, Sci. Tech. Inf. Process., 2011, vol. 38, pp. 377–383.CrossRefGoogle Scholar
  21. 21.
    Podinovski, V.V., Sensitivity Analysis for Choice Problems with Partial Preference Relations, Eur. J. Oper. Res., 2012, vol. 221, pp. 198–204.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Podinovski, V.V., Vvedenie v teoriyu vazhnosti kriteriev v mnogokriterial’nykh zadachakh prinyatiya reshenii (Introduction to the Criteria Importance Theory in Multi-Criteria Decision Making Problems), Moscow: Fizmatlit, 2007.Google Scholar
  23. 23.
    Podinovskii, V.V. and Potapov, M.A., Criteria Importance in Multi-Criteria Decision Making Problems: Theory, Methods, Software, and Applications, Otkrytoe Obrazovan., 2012, no. 2, pp. 55–61.Google Scholar
  24. 24.
    Podinovski, V.V., On Relative Importance of Criteria in Multi-Criteria Decision Making Problems, in Mnogokriterial’nye zadachi prinyatiya reshenii (Multi-Criteria Decision Making Problems), Emel’yanov, S.V., Ed., Moscow: Mashinostroenie, 1978, pp. 48–82.Google Scholar
  25. 25.
    Podinovski, V.V., Parametric Importance of Criteria and Intervals of Value Tradeoffs Uncertainty in the Analysis of Multicriteria Problems, Comput. Math. Math. Phys., 2008, vol. 48, pp. 1981–1998.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nelyubin, A.P., Stability Analysis for Multi-Criteria Choice with Methods of Criteria Importance Theory under Changes in Interval Importance Estimates, Otkrytoe Obrazovan., 2012, no. 2, pp. 47–51.Google Scholar
  27. 27.
    Nelyubin, A.P., Criteria Importance Theory: Sensitivity Analysis of Multicriterial Choice Using Interval Importance Information, Am. J. Control Syst. Inform. Technol, 2013, no. 1, pp. 13–17.Google Scholar
  28. 28.
    Podinovskii, V.V., Quantitative Importance of Criteria, Autom. Remote Control, 2000, vol. 61, no. 5, pp. 817–828.MathSciNetGoogle Scholar
  29. 29.
    Podinovski, V.V., The Quantitative Importance of Criteria for MCDA, J. Multi-Criteria Decision Anal., 2002, vol. 11, pp. 1–15.CrossRefGoogle Scholar
  30. 30.
    Charnes, A. and Cooper, W.W., Management Models and Industrial Applications of Linear Programming, New York: Wiley, 1961.zbMATHGoogle Scholar
  31. 31.
    Podinovski, V.V., Sensitivity of Multi-Criterial Selection to Change Assessment Assessments of Inho-mogeneous Criteria, Inform. Tekhnol. Nauk., Obrazovan. Upravlen., 2017, no. 4, pp. 23–27.Google Scholar
  32. 32.
    Podinovski, V.V., Sensitivity Analysis of Mulcriteria Choice to Changes in Intervals of Value Tradeoffs, Comput. Math. Math. Phys., 2018, vol. 58, pp. 461–469.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Men’shikova, O.R. and Podinovskii, V.V., Construction of the Preference Relation and the Core in Multicriterial Problems with Inhomogeneous Criteria that are Ordered with Respect to Importance, Comput. Math. Math. Phys., 1988, vol. 28, pp. 15–22.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Passy, U. and Levanon, Y., Analysis of Multi-Objective Decision Problems by the Indifference Band Approach, J. Optim. Theory Appl, 1984, vol. 43, pp. 205–235.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Podinovskii, V.V., Multi-Criteria Problems with Uniform Equally Valued Criteria, Zh. Vychisl. Mat. Mat. Fiz., 1975, no. 2, pp. 330–344.MathSciNetzbMATHGoogle Scholar
  36. 36.
    Podinovski, V.V., Potapov, M.A., Nelyubin, A.P., et al., A System for Choosing and Analyzing Multi-Criteria Solutions with Incomplete Preferences, Inform. Tekhnol. Nauk., Obrazovan. Upravlen., 2017, no. 2, pp. 50–57.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.Institute of Computer-Aided Design, Russian Academy of SciencesMoscowRussia

Personalised recommendations