Advertisement

Automation and Remote Control

, Volume 80, Issue 7, pp 1185–1229 | Cite as

The Method of Lyapunov-Razumikhin Functions in Stability Analysis of Systems with Delay

  • A. S. AndreevEmail author
  • N. O. SedovaEmail author
Reviews
  • 1 Downloads

Abstract

The history of development and the current state-of-the-art in the stability theory of systems with delay based on an effective generalization of the direct Lyapunov method are presented. This method uses “classical” Lyapunov functions in combination with the Razumikhin condition.

Keywords

equation with delay stability Lyapunov’s direct method Razumikhin condition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Ministry of Education and Science of the Russian Federation within the State order for research, project no. 9.5994.2017/BCh, and by the Russian Foundation for Basic Research, project no. 1841-730022.

References

  1. 1.
    Volterra, V., Matematicheskaya teoriya bor’by za sushchestvovanie (A Mathematical Theory of the Struggle for Life), Moscow: Nauka, 1976.Google Scholar
  2. 2.
    Volterra, V., Theory of Functionals and of Integral and Integro-Differential Equations, New York: Dover, 1959.zbMATHGoogle Scholar
  3. 2a.
    Volterra, V., Translated under the title Teoriya funktsionalov, integral’nykh i integrodifferentsial’nykh uravnenii, Moscow: Nauka, 1982Google Scholar
  4. 3.
    Andronov, A.A. and Maier, A.G., Elementary Linear Systems with Delay, Avtomat. Telemekh., 1946, vol. 7, nos. 2–3, pp. 95–106.Google Scholar
  5. 4.
    Bogomolov, V.L., Automatic Power Control of Hydroelectric Station by Watercourse, Avtomat. Tele-mekh., 1941, nos. 4–5, pp. 103–129.Google Scholar
  6. 5.
    Kolmanovskii, V.B. and Nosov, V.R., Systems with an After-Effect of the Neutral Type, Autom. Remote Control, 1984, vol. 45, no. 1, pp. 1–28.Google Scholar
  7. 6.
    Hale, J.K., Theory of Functional Differential Equations, New York: Springer-Verlag, 1977.zbMATHCrossRefGoogle Scholar
  8. 6a.
    Hale, J.K., Translated under the title Teoriya funktsional’no-differentsial’nykh uravnenii, Moscow: Mir, 1984.Google Scholar
  9. 7.
    Fridman, E., Introduction to Time-Delay Systems. Analysis and Control, Basel: Birkhäuser, 2014.zbMATHCrossRefGoogle Scholar
  10. 8.
    Krasovskii, N.N., On the Asymptotical Stability of Systems with Aftereffect, Prikl. Mat. Mekh., 1956, vol. 20, no. 4, pp. 513–518.Google Scholar
  11. 9.
    Razumikhin, B.S., On the Stability of Delay Systems, Prikl. Mat. Mekh., 1956, vol. 20, no. 4, pp. 500–512.MathSciNetGoogle Scholar
  12. 10.
    Andreev, A.S., Ustoichivost’ neavtonomnykh funktsional’no-differentsial’nykh uravnenii (The Stability of Nonautonomous Functional-Differential Equations), Ulyanovsk: Ulyan. Gos. Univ., 2005.Google Scholar
  13. 11.
    Andreev, A.S. and Khusanov, D.Kh., On the Method of Lyapunov Functionals in the Problem of Asymptotical Stability and Instability, Differ. Uravn., 1998, vol. 34, no. 7, pp. 876–885.MathSciNetzbMATHGoogle Scholar
  14. 12.
    Kim, A.V., i-Gladkii analiz i funktsional’no-differentsial’nye uravneniya (i-Smooth Analysis and Functional-Differential Equations), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1996.Google Scholar
  15. 13.
    Knyazhishche, L.B., The Localization of Limiting Sets and the Asymptotical Stability of Nonau-tonomous Equations with Delay. I, II, Differ. Uravn., 1998, vol. 34, no. 2, pp. 189–196; no. 8, pp. 1056- 1065.MathSciNetGoogle Scholar
  16. 14.
    Kolmanovskii, V.B. and Nosov, V.R., Ustoichivost’ i periodicheskie rezhimy reguliruemykh sistem s posledeistviem (The Stability and Periodic Modes of Controllable Systems with Aftereffect), Moscow: Nauka, 1981.Google Scholar
  17. 15.
    Krasovskii, N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya (Some Problems in the Theory of Motion Stability), Moscow: Gostekhizdat, 1959.Google Scholar
  18. 16.
    Pavlikov, S.V., Metod funktsionalov Lyapunova v zadachakh ustoichivosti (The Method of Lyapunov Functionals in Stability Problems), Naberezhnye Chelny: Inst. Upravlen., 2006.Google Scholar
  19. 17.
    Shimanov, S.N., On the Instability of Motion of Time-Delay Systems, J. Appl. Math. Mech., 1960, vol. 24, no. 1, pp. 55–63.MathSciNetGoogle Scholar
  20. 18.
    Shimanov, S.N., The Stability of Delay Systems, Tr. II Vsesoyuznogo s”ezda po teoreticheskoi i prik-ladnoi mekhanike (Proc. II All-Union Congress on Theoretical and Applied Mechanics, Moscow, 1964), Moscow: Nauka, 1965, pp. 170–180.Google Scholar
  21. 19.
    Burton, T.A. and Hatvani, L., Stability Theorems for Nonautonomous Functional Differential Equations by Liapunov Functionals, Tohoku Math. J., 1989, vol. 41, pp. 65–104.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 20.
    Driver, R.D., Existence and Stability of Solutions of a Delay-Differential System, Arch. Ration. Mech. Anal., 1962, vol. 10, pp. 401–426.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 21.
    Kato, J., Stability Problem in Functional Differential Equations with Infinite Delay, Funkcialaj Ekva-cioj, 1978, vol. 21, pp. 63–80.MathSciNetzbMATHGoogle Scholar
  24. 22.
    Kolmanovskii, V. and Myshkis, A., Applied Theory of Functional Differential Equations, New York: Kluwer, 1992.zbMATHCrossRefGoogle Scholar
  25. 23.
    Wang, Z., Comparison Method and Stability Problem for Functional Differential Equations, Tohoku Math. J., 1983, vol. 35, pp. 349–356.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 24.
    Yoshizawa, T., Stability Theory by Liapunov’s Second Method, Tokyo: The Math. Soc. of Japan, 1966.zbMATHGoogle Scholar
  27. 25.
    Bernfeld, S.R. and Haddock, J.R., Liapunov-Razumikhin Functions and Convergence of Solutions of Functional-Differential Equations, Appl. Anal., 1979, vol. 4, pp. 235–245.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 26.
    Blanchini, F. and Ryan, E.P., A Razumikhin-type Lemma for Functional Differential Equations with Application to Adaptive Control, Automatica, 1999, vol. 35, pp. 809–818.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 27.
    Gyori, I. and Hartung, F., Preservation of Stability in Delay Equations under Delay Perturbations, J. Math. Anal. Appl., 1998, vol. 220, pp. 290–312.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 28.
    Haddock, J. and Ko, Y., Lyapunov-Razumikhin Functions and an Instability Theorem for Autonomous Functional-Differential Equations with Finite Delay, Rocky Mt. J. Math., 1995, vol. 25, pp. 261–267.zbMATHCrossRefGoogle Scholar
  31. 29.
    Haddock, J. and Terjéki, J., Liapunov-Razumikhin Functions and an Invariance Principle for Functional Differential Equations, J. Differ. Equat., 1983, vol. 48, pp. 95–122.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 30.
    Haddock, J. and Terjéki, J., On the Location of Positive Limit Sets for Autonomous Functional Differential Equations with Infinite Delay, J. Differ. Equat., 1990, vol. 86, pp. 1–32.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 31.
    Haddock, J. and Zhao, J., Instability for Functional Differential Equations, Math. Nachr., 2006, vol. 279, pp. 1491–1504.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 32.
    Hara, T., Yoneyama, T., and Miyazaki, R., Some Refinements of Razumikhin’s Method and Their Applications, Funkc. Ekvacioj., 1992, vol. 35, pp. 279–305.MathSciNetzbMATHGoogle Scholar
  35. 33.
    Hornor, W.E., Invariance Principles and Asymptotic Constancy of Solutions of Precompact Functional Differential Equations, Tohoku Math. J., 1990, vol. 42, pp. 217–229.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 34.
    Hornor, W.E., Liapunov-Razumikhin Pairs and the Location of Positive Limit Sets for Precompact Functional Differential Equations with Infinite Delay, Nonlin. Analysis, Theory, Methods Appl., 1992, vol. 19, pp. 441–453.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 35.
    Jankovic, M., Control Lyapunov-Razumikhin Functions and Robust Stabilization of Time Delay Systems, IEEE Trans. Automat. Control., 2001, vol. 46, pp. 1048–1060.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 36.
    Kato, J., On Liapunov-Razumikhin Type Theorems for Functional Differential Equations, Funkc. Ek-vacioj., 1973, vol. 16, pp. 225–239.MathSciNetzbMATHGoogle Scholar
  39. 37.
    Taniguchi, T., Asymptotic Behavior Theorems for Non-Autonomous Functional Differential Equations via Lyapunov-Razumikhin Method, J. Math. Anal. Appl., 1995, vol. 189, pp. 715–730.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 38.
    Terjéki, J., On the Asymptotic Stability of Solutions of Functional Differential Equations, Ann. Pol. Math., 1979, vol. 36, pp. 299–314.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 39.
    Xu, B. and Liu, Y., An Improved Razumikhin-type Theorem and Its Applications, IEEE Trans. Automat. Control, 1994, vol. 39, pp. 839–841.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 40.
    Parrot, M., Convergence of Solutions of Infinite Delay Differential Equations with an Underlying Space of Continuous Functions, Lect. Notes Math, vol. 846, New York: Springer-Verlag, 1981.Google Scholar
  43. 41.
    Khalil, H.K., Nonlinear Systems, New York: Pearson, 2001, 3rd ed.Google Scholar
  44. 41a.
    Khalil, H.K., Translated under the title Ne-lineinye sistemy, Moscow-Izhevsk: Research and Publising Center for Regular and Chaotic Dynamics, 2009.Google Scholar
  45. 42.
    El’sgol’ts, L.E. and Norkin, S.B., Vvedenie v teoriyu differentsial’nykh uravnenii s otklonyayushchimsya argumentom (Introduction to the Theory of Differential Equations with Shifted Argument), Moscow: Nauka, 1971.Google Scholar
  46. 43.
    Mikolajska, Z., Une remarque sur des notes der Razumichin et Krasovskij sur la stabilite asimptotique, Ann. Pol. Math., 1969, vol. 22, pp. 69–72.zbMATHGoogle Scholar
  47. 44.
    Gorbunov, A.V. and Kamenetskii, V.A., Attraction Domains of Delay Systems: Construction by the Lyapunov Function Method, Autom. Remote Control, 2005, vol. 66, no. 10, pp. 1569–1579.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 45.
    Fridman, E. and Shaked, U., An Ellipsoid Bounding of Reachable Systems with Delay and Bounded Peak Inputs, IFAC Proc. Volumes, 2003, vol. 36, no. 19, pp. 269–274.Google Scholar
  49. 46.
    Krasovskii, N.N. and Kotel’nikova, A.N., The Story of One Approach to Study Hereditary Systems, Izv. Ural. Gos. Univ., 2004, no. 32, pp. 12–24.Google Scholar
  50. 47.
    Kharitonov, V.L., Time-Delay Systems: Lyapunov Functionals and Matrices, Basel: Birkhauser, 2013.zbMATHCrossRefGoogle Scholar
  51. 48.
    Medvedeva, I.V. and Zhabko, A.P., Synthesis of Razumikhin and Lyapunov-Krasovskii Approaches to Stability Analysis of Time-Delay Systems, Automatica, 2015, vol. 51, pp. 372–377.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 49.
    Alexandrova, I.V. and Zhabko, A.P., Synthesis of Razumikhin and Lyapunov-Krasovskii Stability Approaches for Neutral Type Time Delay Systems, Proc. 20th Int. Conf. on System Theory, Control and Computing (ICSTCC), 2016, pp. 375–380.Google Scholar
  53. 50.
    Chaillet, A., Pogromsky, A.Yu., and Rüffer, B.S., A Razumikhin Approach for the Incremental Stability of Delayed Nonlinear Systems, Proc. IEEE Conf. on Decision and Control, December 2013.Google Scholar
  54. 51.
    Karafyllis, I. and Jiang, Z.P., Stability and Control of Nonlinear Systems Described by Retarded Functional Equations: A Review of Recent Results, Sci. China Ser. F-Inf. Sci., 2009, vol. 52, no. 11, pp. 2104–2126.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 52.
    Ning, C., He, Y., Wu, M., and Jinhua, S.J., Improved Razumikhin-Type Theorem for Input-To-State Stability of Nonlinear Time-Delay Systems, IEEE Trans. Automat. Control, 2014, vol. 59, no. 7, pp. 1983–1988.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 53.
    Vorotnikov, V.I., Partial Stability and Control, Boston: Birkhäuser, 1998.zbMATHGoogle Scholar
  57. 54.
    Razumikhin, B.S., Application of Lyapunov’s Method to Stability Problems of Delay Systems, Avtomat. Telemekh., 1960, vol. 21, no. 6, pp. 740–748.MathSciNetzbMATHGoogle Scholar
  58. 55.
    Razumikhin, B.S., A Stability Analysis Method for Systems with Aftereffect, Dokl. Akad. Nauk SSSR, 1966, vol. 167, no. 6, pp. 1234–1237.MathSciNetGoogle Scholar
  59. 56.
    Razumikhin, B.S., Ustoichivost’ ereditarnykh sistem (The Stability of Hereditary Systems), Moscow: Nauka, 1988.Google Scholar
  60. 57.
    Myshkis, A., Razumikhin’s Method in the Qualitative Theory of Processes with Delay, J. Appl. Math. Stoch. Anal., 1995, vol. 8, no. 3, pp. 233–247.MathSciNetzbMATHCrossRefGoogle Scholar
  61. 58.
    Gromova, P.S., On the Inversion of Razumikhin’s Theorems, Differ. Uravn., 1983, vol. 19, no. 2, pp. 357–359.MathSciNetGoogle Scholar
  62. 59.
    Haddock, J., The “Evolution” of Invariance Principles á la Liapunov’s Direct Method, in Advances in Nonlinear Dynamics, Stability and Control: Theory, Methods and Applications, Sivasundaram, S. and Martynyuk, A.A., Eds., 1997, vol. 5, pp. 261–272.Google Scholar
  63. 60.
    Mao, X., Comments on “An Improved Razumikhin-type Theorem and Its Applications,” IEEE Trans. Automat. Control, 1997, vol. 42, pp. 429–430.MathSciNetzbMATHCrossRefGoogle Scholar
  64. 61.
    Xu, B., Author’s Reply, IEEE Trans. Automat. Control, 1997, vol. 42, pp. 430.zbMATHCrossRefGoogle Scholar
  65. 62.
    Mazenc, F. and Niculescu, S.-I., Lyapunov Stability Analysis for Nonlinear Delay Systems, Syst. Control Lett., 2001, vol. 42, pp. 245–251.MathSciNetzbMATHCrossRefGoogle Scholar
  66. 63.
    Prasolov, A.V., Dinamicheskie modeli s zapazdyvaniem i ikh prilozheniya v ekonomike i inzhenerii (Dynamic Models with Delay and Their Applications in Economics and Engineering), St. Petersburg: Lan’, 2010.Google Scholar
  67. 64.
    Sell, G.R., Nonautonomous Differential Equations and Topological Dynamics Trans. Am. Math. Soc., 1967, vol. 127, pp. 214–262.MathSciNetGoogle Scholar
  68. 65.
    Martynyuk, A.A., Kato, D., and Shestakov, A.A., Ustoichivost’ dvizheniya: metod predel’nykh uravnenii (Motion Stability: The Method of Limiting Equations), Kiev: Naukova Dumka, 1990.Google Scholar
  69. 66.
    Shestakov, A.A., Obobshchennyi pryamoi metod Lyapunova dlya sistem s raspredelennymi parametrami (Generalized Lyapunov’s Direct Method for Distributed Parameter Systems), Moscow: Nauka, 1990.zbMATHGoogle Scholar
  70. 67.
    Saperstone, S., Semidynamical Systems in Infinite Dimensional Spaces, New York: Springer Verlag, 1981.zbMATHCrossRefGoogle Scholar
  71. 68.
    Andreev, A.S. and Khusanov, D.Kh., Limiting Equations in the Stability Problem of a Functional-Differential Equation, Differ. Uravn., 1998, vol. 34, no. 4, pp. 435–440.Google Scholar
  72. 69.
    Hino, Y., Stability Properties for Functional Differential Equations with Infinite Delay, Tohoku Math. J., 1983, vol. 35, pp. 597–605.MathSciNetzbMATHCrossRefGoogle Scholar
  73. 70.
    Kato, J., Asymptotic Behavior in Functional Differential Equations with Infinite Delay, in Lect. Notes Math., 1982, no. 1017, pp. 300–312.Google Scholar
  74. 71.
    Murakami, S., Perturbation Theorem for Functional Differential Equations with Infinite Delay via Limiting Equations, J. Differ. Equat., 1985, vol. 59, pp. 314–335.MathSciNetzbMATHCrossRefGoogle Scholar
  75. 72.
    Druzhinina, O.V. and Sedova, N.O., Method of Limiting Equations for the Stability Analysis of Equations with Infinite Delay in the Carathéodory Conditions: II, Differ. Equat., 2014, vol. 50, no. 6, pp. 711–721.zbMATHCrossRefGoogle Scholar
  76. 73.
    Andreev, A. and Sedova, N., On the Stability of Nonautonomous Equations with Delay via Limiting Equations, Func. Differ. Equat. (Israel), 1998, vol. 5, no. 1–2, pp. 21–37.MathSciNetzbMATHGoogle Scholar
  77. 74.
    Andreev, A.S., On the Stability of a Nonautonomous Functional-Differential Equation, Dokl. Math., 1997, vol. 56, no. 2, pp. 664–666.Google Scholar
  78. 75.
    Sedova, N., On Employment of Semidefinite Functions in Stability of Delayed Equations, J. Math. Anal. Appl., 2003, vol. 281, no. 1, pp. 313–325.MathSciNetzbMATHCrossRefGoogle Scholar
  79. 76.
    Ignatyev, A.O., On the Asymptotic Stability in Functional Differential Equations, Proc. Am. Math. Society, 1999, vol. 127, no. 6, pp. 1753–1760.MathSciNetzbMATHCrossRefGoogle Scholar
  80. 77.
    Sedova, N.O., Degenerate Functions in the Asymptotical Stability Analysis of Solutions to Functional-Differential Equations, Mat. Zametki, 2005, vol. 8, no. 3, pp. 468–472.CrossRefGoogle Scholar
  81. 78.
    Iggidr, A. and Sallet, G., On the Stability of Nonautonomous Systems, Automatica, 2003, vol. 39, pp. 167–171.MathSciNetzbMATHCrossRefGoogle Scholar
  82. 79.
    Sedova, N.O., On the Problem of Tracking for the Nonholonomic Systems with Provision for the Feedback Delay, Autom. Remote Control, 2013, vol. 74, no. 8, pp. 1348–1355.MathSciNetzbMATHCrossRefGoogle Scholar
  83. 80.
    Sedova, N.O., Local and Semiglobal Stabilization in a Cascade with Delay Autom. Remote Control, 2008, vol. 69, no. 6, pp. 968–979.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 81.
    Sedova, N.O., On the Principle of Reduction for the Nonlinear Delay Systems, Autom. Remote Control, 2011, vol. 72, no. 9, pp. 1864–1875.MathSciNetzbMATHCrossRefGoogle Scholar
  85. 82.
    Sedova, N.O., Digital Stabilizing Controller Design for Continuous Systems Using the Method of Lya-punov Functions, Probl. Upravlen., 2011, no. 6, pp. 7–13.Google Scholar
  86. 83.
    Prasolov, A.V., On the Application of Lyapunov Functions for the Instability Analysis of Solutions to Systems with Aftereffect, Vestn. Leningrad. Gos. Univ., Ser. 1, 1981, no. 19, pp. 116–118.Google Scholar
  87. 84.
    Prasolov, A.V., The Attributes of Instability for Systems with Aftereffect, Vestn. Leningrad. Gos. Univ., Ser. 1, 1988, no. 3, pp. 108–109.Google Scholar
  88. 85.
    Haddock, J. and Zhao, J., Instability for Autonomous and Periodic Functional Differential Equations with Finite Delay, Funkc. Ekvacioj., 1996, vol. 39, pp. 553–570.MathSciNetzbMATHGoogle Scholar
  89. 86.
    Sedova, N., Razumikhin-type Theorems in the Problem on Instability of Nonautonomous Equations with Finite Delay, Funkc. Ekvacioj., 2004, vol. 47, pp. 187–204.MathSciNetzbMATHCrossRefGoogle Scholar
  90. 87.
    Lakshmikantham, V., Lyapunov Function and a Basic Inequality in Delay-Differential Equations, Arch. Ration. Mech. Ann., 1962, vol. 7, no. 1, pp. 305–310.MathSciNetzbMATHCrossRefGoogle Scholar
  91. 88.
    Lakshmikantam, V. and Martynyuk, A.A., Development of Lyapunov’s Direct Method for Systems with Aftereffect, Prikl. Mekh., 1993, vol. 29, no. 2, pp. 2–16.Google Scholar
  92. 89.
    Xu, B., Stability of Retarded Dynamical Systems: A Lyapunov Functions Approach, J. Math. Anal. Appl., 2001, vol. 253, pp. 590–615.MathSciNetzbMATHCrossRefGoogle Scholar
  93. 90.
    Ansari, J.S., Modified Liapunov-Razumikhin Stability Condition for Extended Range of Applicability, J. Indian Inst. Sci., 1976, vol. 58, no. 3, pp. 115–120.MathSciNetzbMATHGoogle Scholar
  94. 91.
    Furumochi, T., Stability and Boundedness in Functional Differential Equations, J. Math. Anal. Appl., 1986, vol. 113, no. 2, pp. 473–489.MathSciNetzbMATHCrossRefGoogle Scholar
  95. 92.
    Kozlov, R.I., Systems of Conditional Differential Equations of the Kato Type, Sib. Mat. Zh., 1994, vol. 35, no. 6, pp. 1253–1263.CrossRefGoogle Scholar
  96. 93.
    Gromova, P.S. and Lizano Peña, M., The Method of Vector Lyapunov Functions for Systems with Delay, Izv. Vyssh. Uchebn. Zaved., Mat., 1981, no. 8, pp. 21–26.Google Scholar
  97. 94.
    Peregudova, O.A., Development of the Lyapunov Function Method in the Stability Problem for Functional-Differential Equations, Differ. Equat., 2008, vol. 44, no. 12, pp. 1701–1710.MathSciNetzbMATHCrossRefGoogle Scholar
  98. 95.
    Zhou, B. and Egorov, A.V., Razumikhin and Krasovskii Stability Theorems for Time-Varying Time-Delay Systems, Automatica, 2016, vol. 71, pp. 281–291.MathSciNetzbMATHCrossRefGoogle Scholar
  99. 96.
    Mazenc, F. and Malisoff, M., Extensions of Razumikhin’s Theorem and Lyapunov-Krasovskii Functional Constructions for Time-Varying Systems with Delay, Automatica, 2017, vol. 78, pp. 1–13.MathSciNetzbMATHCrossRefGoogle Scholar
  100. 97.
    Hino, Y., Murakami, S., and Naito, T., Functional Differential Equations with Infinite Delay, Lect. Notes Math, vol. 1473, Berlin: Springer-Verlag, 1991.Google Scholar
  101. 98.
    Sedova, N.A., A Remark on the Lyapunov-Razumikhin Method for Equations with Infinite Delay, Differ. Equat., 2002, vol. 38, no. 10, pp. 1423–1434.MathSciNetzbMATHCrossRefGoogle Scholar
  102. 99.
    Hale, J. and Kato, J., Phase Space for Retarded Equations with Infinite Delay Funkc. Ekvacioj., 1978, vol. 21, no. 1, pp. 11–41.Google Scholar
  103. 100.
    Murakami, S. and Naito, T., Fading Memory Spaces and Stability Properties for Functional Differential Equations with Infinite Delay, Funkc. Ekvacioj., 1989, vol. 32, pp. 91–105.MathSciNetzbMATHGoogle Scholar
  104. 101.
    Haddock, J. and Hornor, W., Precompactness and Convergence in Norm of Positive Orbits in a Certain Fading Memory Space, Funkc. Ekvacioj., 1988, vol. 31, pp. 349–361.MathSciNetzbMATHGoogle Scholar
  105. 102.
    Kato, J., Stability in Functional Differential Equations, Lect. Notes Math., 1980, vol. 799, pp. 252–262.MathSciNetCrossRefGoogle Scholar
  106. 103.
    Atkinson, F. and Haddock, J., On Determining Phase Spaces for Functional Differential Equations, Funkc. Ekvacioj., 1988, vol. 31, pp. 331–348.MathSciNetzbMATHGoogle Scholar
  107. 104.
    Seifert, G., Liapunov-Razumikhin Conditions for Asymptotic Stability in Functional Differential Equations of Volterra Type, J. Differ. Equat., 1974, vol. 16, pp. 289–297.MathSciNetzbMATHCrossRefGoogle Scholar
  108. 105.
    Seifert, G., Liapunov-Razumikhin Conditions for Stability and Boundedness of Functional Differential Equations of Volterra Type, J. Differ. Equat., 1973, vol. 14, pp. 424–430.MathSciNetzbMATHCrossRefGoogle Scholar
  109. 106.
    Seifert, G., Uniform Stability for Delay-Differential Equations with Infinite Delay, Funkc. Ekvacioj., 1982, vol. 25, pp. 347–356.MathSciNetzbMATHGoogle Scholar
  110. 107.
    Murakami, S., Stability in Functional Differential Equations with Infinite Delay, Tohoku Math. J., 1985, vol. 36, pp. 561–570.MathSciNetzbMATHCrossRefGoogle Scholar
  111. 108.
    Zhi-Xiang, L., Liapunov-Razumikhin Functions and the Asymptotic Properties of the Autonomous Functional Differential Equations with Infinite Delay, Tohoku Math. J., 1986, vol. 38, pp. 491–499.MathSciNetzbMATHCrossRefGoogle Scholar
  112. 109.
    Zhang, S., A New Technique in Stability of Infinite Delay Differential Equations, Comput. Math. Appl., 2002, vol. 44, pp. 1275–1287.MathSciNetzbMATHCrossRefGoogle Scholar
  113. 110.
    Sedova, N.O., Development of the Direct Lyapunov Method for Functional-Differential Equations with Infinite Delay, Math. Notes, 2008, vol. 84, nos. 5–6, pp. 826–841.MathSciNetzbMATHCrossRefGoogle Scholar
  114. 111.
    Sedova, N.O., Stability in Systems with Unbounded Aftereffect, Autom. Remote Control, 2009, vol. 70, no. 9, pp. 1553–1564.MathSciNetzbMATHCrossRefGoogle Scholar
  115. 112.
    Druzhinina, O.V. and Sedova, N.O., Method of Limiting Equations for the Stability Analysis of Equations with Infinite Delay in the Carathéodory Conditions: I, Differ. Equat., 2014, vol. 50, no. 5, pp. 569–580.zbMATHCrossRefGoogle Scholar
  116. 113.
    Ko, Y., The Instability for Functional Differential Equations, J. Korean Math. Soc., 1999, vol. 36, no. 4, pp. 757–771.MathSciNetzbMATHGoogle Scholar
  117. 114.
    Sedova, N., Lyapunov-Razumikhin Pairs in the Instability Problem for Infinite Delay Equations, Non-lin. Analysis, Theory, Methods Appl., 2010, vol. 73, pp. 2324–2333.MathSciNetzbMATHCrossRefGoogle Scholar
  118. 115.
    Grimmer, R. and Seifert, G., Stability Properties of Volterra Integrodifferential Equations, J. Differ. Equat., 1975, vol. 19, pp. 147–166.MathSciNetzbMATHCrossRefGoogle Scholar
  119. 116.
    Hino, Y. and Murakami, S., Stability Properties of Linear Volterra Equations J. Differ. Equat., 1991, vol. 89, pp. 121–137.Google Scholar
  120. 117.
    Haddock, J.R., Krisztin, T., Terjeki, J., and Wu, J.H., An Invariance Principle of Lyapunov- Razumikhin Type for Neutral Functional-Differential Equations, J. Differ. Equat., 1994, vol. 107, no. 2, pp. 395–417.MathSciNetzbMATHCrossRefGoogle Scholar
  121. 118.
    Jankovic, S., Jovanovic, M., and Randjelovic, J., Razumikhin-type Exponential Stability Criteria of Neutral Stochastic Functional Differential Equations, J. Math. Anal. Appl., 2009, vol. 355, no. 2, pp. 811–820.MathSciNetzbMATHCrossRefGoogle Scholar
  122. 119.
    Bogdanov, A.Yu., The Development of Lyapunov-Razumikhin Function Method for Nonautonomous Discrete Systems with Unrestricted Delay, Izv. Vyssh. Uchebn. Zaved., Povolzh. Reg., Fiz.-Mat. Nauki, 2007, no. 1, pp. 28–39.Google Scholar
  123. 120.
    Rodionov, A.M., On Analysis of Sampled-Data Variable Structure Systems with Delay, Avtomat. Tele-mekh., 1988, no. 11, pp. 188–190.Google Scholar
  124. 121.
    Hou, C., Gao, F., and Qian, J., Stability Criterion for Linear Systems with Nonlinear Delayed Perturbations, J. Math. Anal. Appl., 1999, vol. 237, pp. 573–582.MathSciNetzbMATHCrossRefGoogle Scholar
  125. 122.
    Michiels, W., Sepulchre, R., and Roose, D., Robustness of Nonlinear Delay Equations w.r.t. Bounded Input Perturbations, Proc. 14th Int. Symp. Math. Theory of Networks and Syst. (MTNS2000), 2000, pp. 1–5.Google Scholar
  126. 123.
    Yuan, R., Existence of Almost Periodic Solutions of Neutral Functional Differential Equations via Liapunov-Razumikhin Function, Zeitschrift Angewandte Math. Physik, 1998, vol. 49, pp. 113–136.MathSciNetzbMATHCrossRefGoogle Scholar
  127. 124.
    Hua, C., et al., Robust Control for Nonlinear Time-Delay Systems, Singapore: Springer Nature Singapore, 2018.zbMATHCrossRefGoogle Scholar
  128. 125.
    Ilchmann, A. and Sangman, C.J., Output Feedback Stabilization of Minimum Phase Systems by Delays, Syst. Control Lett., 2004, vol. 52, pp. 233–245.CrossRefGoogle Scholar
  129. 126.
    Efimov, D., Schiffer, J., and Ortega, R., Robustness of Delayed Multistable Systems with Application to Droop-Controlled Inverter-Based Microgrids, Int. J. Control, 2016, vol. 89, no. 5, pp. 909–918.MathSciNetzbMATHCrossRefGoogle Scholar
  130. 127.
    Khusainov, D.Ya. and Shatyrko, A.V., Metod funktsii Lyapunova v issledovanii ustoichivosti differen-tsial’no-funktsional’nykh uravnenii (The Method of Lyapunov Functions in the Stability Analysis of Differential-Functional Equations), Kiev: Kiev. Univ., 1997.Google Scholar
  131. 128.
    Shashikhin, V.N., Robust Control Design for Interval Large-Scale Systems with Aftereffects, Autom. Remote Control, 1997, vol. 58, no. 12, pp. 1978–1986.MathSciNetzbMATHGoogle Scholar
  132. 129.
    Aleksandrov, A., Aleksandrova, E., and Zhabko, A., Asymptotic Stability Conditions and Estimates of Solutions for Nonlinear Multiconnected Time-Delay Systems Circ. Syst. Signal Process., 2016, vol. 35, no. 10, pp. 3531–3554.Google Scholar
  133. 130.
    Myshkis, A.D., Mixed Functional-Differential Equations, Sovr. Mat. Fundam. Napravl., 2003, vol. 4, pp. 5–120.zbMATHGoogle Scholar
  134. 131.
    Aleksandrov, A., Aleksandrova, E., and Zhabko, A., Stability Analysis of Some Classes of Nonlinear Switched Systems with Time Delay, Int. J. Syst. Sci., 2017, vol. 48, no. 10, pp. 2111–2119.MathSciNetzbMATHCrossRefGoogle Scholar
  135. 132.
    Baleanu, D., Sadati, S.J., Ghaderi, R., Ranjbar, A., Abdeljawad (Maraaba), T., and Jarad, F., Razu-mikhin Stability Theorem for Fractional Systems with Delay, Abstr. Appl. Anal., vol. 2010, article ID 124812, Hindawi Publish. Corporation.Google Scholar
  136. 133.
    Chen, W.H., Liu, L.J., and Lu, X.M., Intermittent Synchronization of Reaction-Diffusion Neural Networks with Mixed Delays via Razumikhin Technique, Nonlin. Dynam., 2017, vol. 87, no. 1, pp. 535–551.zbMATHCrossRefGoogle Scholar
  137. 134.
    Li, X.D. and Ding, Y.H., Razumikhin-type Theorems for Time-Delay Systems with Persistent Impulses, Syst. Control Lett., 2017, vol. 107, pp. 22–27.MathSciNetzbMATHCrossRefGoogle Scholar
  138. 135.
    Li, X.D. and Deng, F.Q., Razumikhin Method for Impulsive Functional Differential Equations of Neutral Type, Chaos Solitons & Fractals, 2017, vol. 101, pp. 41–49.MathSciNetzbMATHCrossRefGoogle Scholar
  139. 136.
    Zhu, Q.X., Razumikhin-type Theorem for Stochastic Functional Differential Equations with Levy Noise and Markov Switching, Int. J. Control, 2017, vol. 90, no. 8, pp. 1703–1712.zbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ulyanovsk State UniversityUlyanovskRussia

Personalised recommendations