Advertisement

Automation and Remote Control

, Volume 80, Issue 6, pp 1109–1122 | Cite as

Awareness and Control Decentralization

  • M. A. GorelovEmail author
  • F. I. EreshkoEmail author
Intellectual Control Systems, Data Analysis
  • 3 Downloads

Abstract

The control problem of an organizational system under external uncertainty is considered. The reasonability of using decentralized control depending on the volume of available information about uncertain factors is investigated. The qualitative structure of optimal strategies with centralized and decentralized control is studied.

Keywords

information theory of hierarchical systems control decentralization maximal guaranteed result 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Blaug, M., A Guide on the Wealth of Nations, in Ekonomicheskaya mysl’ v retrospektive (Economic Thought in Retrospect), Moscow: Delo, 1994, pp. 33–53.Google Scholar
  3. 3.
    Aliprantis, C.D., Brown, D.J., and Burkinshaw, O., Existence and Optimality of Competitive Equilibria, Berlin: Springer-Verlag, 1990. Translated under the title Sushchestvovanie i optimal’nost’ konkurentnogo ravnovesiya, Moscow: Mir, 1995.CrossRefzbMATHGoogle Scholar
  4. 4.
    Klima, R.E. and Hodge, J.K., The Mathematics of Voting and Elections: A Hands-on Approach, Providence: AMS, 2005. Translated under the title Matematika vyborov, Moscow: Mosk. Tsentr Nepreryvn. Mat. Obraz., 2007.zbMATHGoogle Scholar
  5. 5.
    Iterativnye metody v teorii igr i programmirovanii (Iterative Methods in Game Theory and Programming), Belen’kii, V.Z. and Volkonskii, V.A., Eds., Moscow: Nauka, 1974.Google Scholar
  6. 6.
    Germeier, Yu.B., Nonantagonistic Games, Dordrecht: Dordrecht Reidel Publishing, 1986.Google Scholar
  7. 7.
    Vatel’, I.A. and Ereshko, F.I., Games with Hierarchical Structure, in Matematicheskaya entsiklopediya. To m 2 (Mathematical Encyclopedia), Moscow: Sovetskaya Entsiklopediya, 1979, vol. 2, pp. 477–481.Google Scholar
  8. 8.
    Gorelik, V.A. and Kononenko, A.F., Teoretiko-igrovye modeli prinyatiya reshenii v ekologo-ekonomicheskikh sistemakh (Game-Theoretic Models of Decision-Making in Ecological-Economic Systems), Moscow: Radio i Svyaz’, 1982.zbMATHGoogle Scholar
  9. 9.
    Gorelik, V.A., Gorelov, M.A., and Kononenko, A.F., Analiz konfliktnykh situatsii v sistemakh upravleniya (Analysis of Conflicts in Control Systems), Moscow: Radio i Svyaz’, 1991.zbMATHGoogle Scholar
  10. 10.
    Germeier, Yu.B. and Moiseev, N.N., On Some Problems in the Theory of Hierarchical Systems, in Problemy prikladno. matematiki i mekhaniki (Problems of Applied Mathematics and Mechanics), Moscow: Nauka, 1971, pp. 30–43.Google Scholar
  11. 11.
    Moiseev, N.N., Matematicheskie zadachi sistemnogo analiza (Mathematical Problems of Systems Analysis), Moscow: Nauka, 1981.Google Scholar
  12. 12.
    Moiseev, N.N., Hierarchical Structures and Game Theory, Izv. Akad. Nauk SSSR, Ser. Tekh. Kibern., 1973, no. 6, pp. 1–11.Google Scholar
  13. 13.
    Moiseev, N.N., Information Theory of Hierarchical Systems, Tr. I Vses. konf. po issledovaniyu operatsii (Proc. I All-Union Conference on Operations Research), Minsk, 1974, pp. 95–99.Google Scholar
  14. 14.
    Kukushkin, N.S., On One Game with Incomplete Information, Zh. Vychisl. Mat. Mat. Fiz., 1973, vol. 13, no. 1, pp. 210–216.Google Scholar
  15. 15.
    Ereshko, F.I. and Kononenko, A.F., The Solution of the Game with the Right of the First Move under Incompletely Known Goal of the Partner, Zh. Vychisl. Mat. Mat. Fiz., 1973, vol. 13, no. 1, pp. 217–221.Google Scholar
  16. 16.
    Vatel’, I.A. and Kukushkin, N.S., The Optimal Behavior of a Player with the Right of the First Move under Incompletely Known Interests of the Partner, Zh. Vychisl. Mat. Mat. Fiz., 1973, vol. 13, no. 2, pp. 303–310.Google Scholar
  17. 17.
    Kononenko, A.F., The Role of Information about the Opponent’s Goal Function in Two-Person Games with a Fixed Sequence of Moves, Zh. Vychisl. Mat. Mat. Fiz., 1973, vol. 13, no. 2, pp. 311–317.Google Scholar
  18. 18.
    Burkov, V.N., Osnovy matematicheskoi teorii aktivnykh sistem (Foundations of the Mathematical Theory of Active Systems), Moscow: Nauka, 1977.Google Scholar
  19. 19.
    Novikov, D., Theory of Control in Organizations, New York: Nova Science, 2013.Google Scholar
  20. 20.
    Hurwicz, L., On Informationally Decentralized Systems, in Decision and Organization, Amsterdam: North-Holland, 1972, pp. 297–336.Google Scholar
  21. 21.
    Itoh, H., Incentives to Help in Multi-agent Situations, Econometrica, 1991, vol. 59, no. 3, pp. 611–636.CrossRefzbMATHGoogle Scholar
  22. 22.
    Myerson, R.B., Optimal Coordination Mechanisms in Generalized Principal-Agent Problems, J. Mat. Econom., 1982, vol. 10, no. 1, pp. 67–81.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Poitevin, M., Can the Theory of Incentives Explain Decentralization?, Canad. J. Econom., 2000, vol. 33, pp. 878–906.CrossRefGoogle Scholar
  24. 24.
    Coase, R., The Problem of Social Cost, J. Law Econom., 1960, vol. 3, pp. 1–44.CrossRefGoogle Scholar
  25. 25.
    Fudenberg, D. and Tirole, J., Game Theory, Cambridge: MIT Press, 1991.zbMATHGoogle Scholar
  26. 26.
    Melamud, N., Mookherjee, D., and Reichelstein, S., Hierarchical Decentralization of Incentive Contracts, Rand J. Econom., 1995, vol. 26, pp. 654–672.CrossRefGoogle Scholar
  27. 27.
    Alonso, R., Dessein, W., and Matouschek, N., When Does Coordination Require Centralization?, Am. Econom. Rev., 2008, vol. 98, pp. 145–179.CrossRefGoogle Scholar
  28. 28.
    Gorelov, M.A., Maximal Guaranteed Result for Limited Volume of Transmitted Information, Autom. Remote Control, 2011, vol. 72, no. 3, pp. 580–599.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Moulin, H., Game Theory for the Social Sciences (Studies in Game Theory and Mathematical Economics), New York: New York Univ. Press, 1982. Translated under the title Teoriya igr s primerami iz matematicheskoi ekonomiki, Moscow: Mir, 1983.Google Scholar
  30. 30.
    de Meziriac, B., Problemes plaisants et delectables, qui se font par les nombres, Lyon, 1612.zbMATHGoogle Scholar
  31. 31.
    Zermelo, E., On Application of Set Theory to Chess Theory, in Matrichnye igry (Matrix Games), Moscow: Nauka, 1961, pp. 167–172.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Dorodnicyn Computing CentreRussian Academy of SciencesMoscowRussia

Personalised recommendations