Advertisement

Automation and Remote Control

, Volume 80, Issue 6, pp 1082–1097 | Cite as

Sum Codes with Fixed Values of Multiplicities for Detectable Unidirectional and Asymmetrical Errors for Technical Diagnostics of Discrete Systems

  • D. V. EfanovEmail author
  • V. V. SapozhnikovEmail author
  • Vl. V. SapozhnikovEmail author
Control in Technical Systems
  • 1 Downloads

Abstract

We introduce the concept of sum codes with fixed values of the multiplicities of unidirectional and asymmetrical errors in data vectors. We show that such codes can be constructed on the basis of weighing one of the data vector's bits by a natural number w = 2 and then calculating the total weight of the data vector modulo the Berger code (M = 2[log2(m+1)]). We establish the basic characteristics of the new class of sum codes. Compared with the Berger code, the proposed codes have the advantage of detecting symmetrical errors while maintaining the property of detecting any unidirectional and asymmetrical errors up to fixed multiplicities. Such codes can be effectively used in the construction of concurrent error-detection systems for combinational logic devices and, especially, in the construction of systems with the detection of all single faults in the controlled device.

Keywords

technical diagnostics sum codes Berger codes data vector unidirectional error asymmetrical error code properties combinational logic device concurrent error-detection system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCluskey, E.J., Logic Design Principles: With Emphasis on Testable Semicustom Circuits, New Jersey: Prentice Hall, 1986.Google Scholar
  2. 2.
    Nicolaidis, M. and Zorian, Y., On-Line Testing for VLSI—A Compendium of Approaches, J. Electron. Testing: Theory Appl., 1998, vol. 12, no. 1–2, pp. 7–20. DOI:  https://doi.org/10.1023/A:1008244815697 Google Scholar
  3. 3.
    Mitra, S. and McCluskey, E.J., Which Concurrent Error Detection Scheme to Shoose?, Proc. Int. Test Conf. 2000, Atlantic City, 3–5 October 2000, pp. 985–994. DOI:  https://doi.org/10.1109/TEST.2000.894311 Google Scholar
  4. 4.
    Fujiwara, E., Code Design for Dependable Systems: Theory and Practical Applications, New Jersey: Wiley, 2006.CrossRefzbMATHGoogle Scholar
  5. 5.
    Freiman, C.V., Optimal Error Detection Codes for Completely Asymmetric Binary Channels, Inform. Control, 1962, vol. 5, no. 1, pp. 64–71. DOI:  https://doi.org/10.1016/S0019-9958(62)90223-1 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Error Classification in Information Vectors of Systematic Codes, Izv. Vyssh. Uchebn. Zaved., Priborostroen., 2015, vol. 58, no. 5, pp. 333–343. DOI:  https://doi.org/10.17586/0021-3454-2015-58-5-333-343 CrossRefzbMATHGoogle Scholar
  7. 7.
    Berger, J.M., A Note on Error Detection Codes for Asymmetric Channels, Inf. Control, 1961, vol. 4, no. 1, pp. 68–73. DOI:  https://doi.org/10.1016/S0019-9958(61)80037-5 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sogomonyan, E.S. and Slabakov, E.V., Samoproveryaemye ustroistva i otkazoustoichivye sistemy (Self-Testing Devices and Fault-Tolerant Systems), Moscow: Radio i Svyaz', 1989.Google Scholar
  9. 9.
    Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Conditions for Detecting a Logical Element Fault in a Combination Device under Concurrent Checking Based on Berger's Code, Autom. Remote Control, 2017, vol. 78, no. 5, pp. 891–901. DOI:  https://doi.org/10.1134/S0005117917040113 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Piestrak, S.J., Design of Self-Testing Checkers for Unidirectional Error Detecting Codes, Wroclaw: Oficyna Wydawnicza Politechniki Wroclavskiej, 1995.Google Scholar
  11. 11.
    Das, D. and Touba, N.A., Synthesis of Circuits with Low-Cost Concurrent Error Detection Based on Bose-Lin Codes, J. Electron. Testing: Theory Appl., 1999, vol. 15, no. 1–2, pp. 145–155. DOI:  https://doi.org/10.1023/A:1008344603814 CrossRefGoogle Scholar
  12. 12.
    Sapozhnikov, V., Sapozhnikov, Vl., and Efanov, D., Modular Sum Code in Building Testable Discrete Systems, Proc. 13 IEEE East-West Design & Test Sympos. (EWDTS'2015), Batumi, Georgia, September 26–29, 2015, pp. 181–187. DOI:  https://doi.org/10.1109/EWDTS.2015.7493133 Google Scholar
  13. 13.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Cherepanova, M.R., Modular Sum Codes in CED Systems. I, Elektron. Modelir., 2016, vol. 38, no. 2, pp. 27–48.CrossRefGoogle Scholar
  14. 14.
    Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Constructing a Modified Berger Code with Minimal Number of Undetectable Errors in Data Digits, Elektron. Modelir., 2012, vol. 34, no. 6, pp. 17–29.Google Scholar
  15. 15.
    Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., On Codes with Summation of Unit Bits in Concurrent Error Detection Systems, Autom. Remote Control, 2014, vol. 75, no. 8, pp. 1460–1470. DOI:  https://doi.org/10.1134/S0005117914080098 CrossRefzbMATHGoogle Scholar
  16. 16.
    Das, D. and Touba, N.A., Weight-Based Codes and Their Application to Concurrent Error Detection of Multilevel Circuits, Proc. 17 IEEE Test Symposium, California, USA, 1999, pp. 370–376.Google Scholar
  17. 17.
    Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D., and Nikitin, D., Combinational Circuits Checking on the Base of Sum Codes with One Weighted Data Bit, Proc. 12 IEEE East-West Design & Test Sympos. (EWDTS'2014), Kyiv, Ukraine, September 26–29, 2014, pp. 126–136. DOI:  https://doi.org/10.1109/EWDTS.2014.7027064 Google Scholar
  18. 18.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Construction of Sum Codes with the Smallest Number of Undetectable Symmetrical Errors in Data Vectors, Radioelektron. Informat., 2014, no. 4, pp. 46–55.Google Scholar
  19. 19.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Control for Combination Circuits Based on Sum Codes with One Weighted Data Bit, Avtom. Transporte, 2016, vol. 2, no. 4, pp. 564–597.Google Scholar
  20. 20.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Nikitin, D.A., A Study of the Properties of Sum Codes with One Weighted Data Bit in CED Systems, Elektron. Modelir., 2015, vol. 37, no. 1, pp. 25–48.Google Scholar
  21. 21.
    Efanov, D., Sapozhnikov, V., and Sapozhnikov, Vl., On Variety of Sum Codes with On-Data Bits and One Weighted Data Bit in Concurrent Error Detection Systems, Proc. 2 Int. Conf. Indust. Eng., Appl. Manufactur. (ICIEAM), Chelyabinsk, Russia, 19–20 May, 2016. DOI:  https://doi.org/10.1109/ICIEAM.2016.7911684 Google Scholar
  22. 22.
    Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., On Summation Code Properties in Functional Control Circuits, Autom. Remote Control, 2010, vol. 71, no. 6, pp. 1117–1123. DOI:  https://doi.org/10.1134/S0005117910060123 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Drozd, A.V., A Non-Traditional View of Operational Diagnostics of Computational Devices, Probl. Upravlen., 2008, no. 2, pp. 48–56.Google Scholar
  24. 24.
    Busaba, F.Y. and Lala, P.K., Self-Checking Combinational Circuit Design for Single and Unidirectional Multibit Errors, J. Electron. Testing: Theory Appl., 1994, no. 1, pp. 19–28, DOI:  https://doi.org/10.1007/BF00971960.Google Scholar
  25. 25.
    Morosow, A., Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Goessel, M., Self-Checking Combinational Circuits with Unidirectionally Independent Outputs, VLSI Design, 1998, vol. 5, no. 4, pp. 333–345. DOI:  https://doi.org/10.1155/1998/20389 CrossRefGoogle Scholar
  26. 26.
    Saposhnikov, V.V., Morosov, A., Saposhnikov, Vl.V., and Göessel, M., A New Design Method for Self-Checking Unidirectional Combinational Circuits, J. Electron. Testing: Theory Appl., 1998, vol. 12, no. 1–2, pp. 41–53. DOI:  https://doi.org/10.1023/A:1008257118423 Google Scholar
  27. 27.
    Göessel, M., Ocheretny, V., Sogomonyan, E., and Marienfeld, D., New Methods of Concurrent Checking: Edition 1, Dordrecht: Springer Science+Business Media, 2008.Google Scholar
  28. 28.
    Goessel, M. and Sogomonyan, E.S., Formation of Self-Testing and Self-Checking Combinational Circuits with Weakly Independent Outputs, Autom. Remote Control, 1992, vol. 53, no. 8, pp. 1264–1272.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.“LocoTech-Signal” LLCMoscowRussia
  2. 2.Russian University of TransportMoscowRussia
  3. 3.Emperor Alexander I St. Petersburg State Transport UniversitySt. PetersburgRussia

Personalised recommendations