Advertisement

Automation and Remote Control

, Volume 80, Issue 6, pp 1026–1040 | Cite as

On Application of Gaussian Functions for Numerical Solution of Optimal Control Problems

  • A. V. ChernovEmail author
Nonlinear Systems
  • 7 Downloads

Abstract

It is proved that the linear combinations of shifts and contractions of the Gaussian function can be used for an arbitrarily accurate approximation in the space of continuous functions of one variable on any fixed intervals. On the example of the soft lunar landing problem, a method for the numerical solution of optimal control problems based on this approximation procedure of the control function is described. Within the framework of the same example, the sensitivity of constraint functionals to the specification error of optimal parameters is investigated using three approaches as follows: 1) Pontryagin’s maximum principle (both numerically and theoretically); 2) the control parametrization technique in combination with the method of sliding nodes; 3) the newly proposed method. A comparative analysis is performed that confirms the effectiveness of the third method.

Keywords

control parametrization technique lumped optimal control problem approximation using Gaussian functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Ministry of Education and Science of the Russian Federation within the State order for research in 2014–2016, project no. 1727.

References

  1. 1.
    Chernov, A.V., On Using Gaussian Functions with Varied Parameters for Approximation of Functions of One Variable on a Finite Segment, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 2017, vol 27, no. 2, pp. 267–282.CrossRefzbMATHGoogle Scholar
  2. 2.
    Chernov, A.V., On Approximate Solution of Free-time Optimal Control Problems, Vestn. Nizhegorod. Gos. Univ. Lobachev., 2012, no. 6 (1), pp. 107–114.Google Scholar
  3. 3.
    Chernov, A.V., Smooth Finite-Dimensional Approximations of Distributed Optimization Problems via Control Discretization, Comput. Math. Math. Phys., 2013, vol. 53, no. 12, pp. 1839–1852.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chernov, A.V., On Applicability of Control Parametrization Technique to Solving Distributed Optimization Problems, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 2014, vol 24, no. 1, pp. 102–117.CrossRefzbMATHGoogle Scholar
  5. 5.
    Chernov, A.V., On the Smoothness of an Approximated Optimization Problem for a Goursat–Darboux System on a Varied Domain, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2014, vol. 20, no. 1, pp. 305–321.Google Scholar
  6. 6.
    Chernov, A.V., On Piecewise Constant Approximation in Distributed Optimization Problems, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2015, vol. 21, no. 1, pp. 264–279.MathSciNetGoogle Scholar
  7. 7.
    Novikov, I.Ya., Protasov, V.Yu., and Skopina, M.A., Wavelet Theory, in Translations of Mathematical Monographs, vol. 239, Providence: American Mathematical Society, 2011.Google Scholar
  8. 8.
    Gajewski, H., Gröger, K., and Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Berlin: Akademie, 1974. Translated under the title Nelineinye operatornye uravneniya i operatornye differentsial’nye uravneniya, Moscow: Mir, 1978.zbMATHGoogle Scholar
  9. 9.
    Fedorov, V.M., Kurs funktsional’nogo analiza (Course on Functional Analysis), St. Petersburg: Lan’, 2005.Google Scholar
  10. 10.
    Chernov, A.V., On the Application of Gaussian Functions for Discretization of Optimal Control Problems, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 2017, vol 27, no. 4, pp. 558–575.CrossRefzbMATHGoogle Scholar
  11. 11.
    Daubechies, I., Ten Lectures on Wavelets, Philadelphia: SIAM, 1992. Translated under the title Desyat’ lektsii po veivletam, Izhevsk: NITs PKhD, 2001.CrossRefzbMATHGoogle Scholar
  12. 12.
    Chernov, A.V., JPEG-Like Method of Control Parametrization for Numerical Solution of the Distributed Optimization Problems, Autom. Remote Control, 2017, vol. 78, no. 8, pp. 1474–1488.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Afanas’ev, V.N., Kolmanovskii, V.B., and Nosov, V.R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya (Mathematical Theory of Control Systems Design), Moscow: Vysshaya Shkola, 2003.Google Scholar
  14. 14.
    Chernov, A.V., On Differentiation of Functionals of Approximating Problems in the Frame of Solution of Free Time Optimal Control Problems by the Sliding Nodes Method, Vestn. Tambov. Univ. Estestv. Tekh. Nauki, 2018, vol 23, no. 124, pp. 861–876.Google Scholar
  15. 15.
    Petrov, Yu.P. and Petrov, L.Yu., Neozhidannoe v matematike i ego svyaz’s avariyami i katastrofami (Unexpected in Mathematics and Its Connection to Accidents and Disasters), St. Petersburg: BKhV-Peterburg, 2005.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Lobachevsky Nizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations