Automation and Remote Control

, Volume 80, Issue 6, pp 989–1015 | Cite as

Consensus in Asynchronous Multiagent Systems. III. Constructive Stability and Stabilizability

  • V. S. KozyakinEmail author
  • N. A. KuznetsovEmail author
  • P. Yu. ChebotarevEmail author


We describe certain classes of linear asynchronous multi-agent systems in discrete time for which the stability problem allows for a constructive solution. We also present a general analytic approach to constructing numerical characteristics similar to the generalized spectral radius in stability theory, which would provide an opportunity to analyze the stabilizability of controlled multi-agent systems. This work completes our survey “Consensus in Asynchronous Multi-Agent Systems,” whose first two parts have been published in [1, 2].


asynchronous multi-agent systems consensus stability stabilizability Markov systems matrix products joint spectral radius 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work of the third author was supported by the Russian Science Foundation, project no. 19-19-00673 provided by the Trapeznikov Institute of Control Sciences of the RAS.


  1. 1.
    Kozyakin, V.S., Kuznetsov, N.A., and Chebotarev, P.Yu., Consensus in Asynchronous Multiagent Systems. I, Autom. Remote Control, 2019, vol. 80, no. 4, pp. 593–623.Google Scholar
  2. 2.
    Kozyakin, V.S., Kuznetsov, N.A., and Chebotarev, P.Yu., Consensus in Asynchronous Multiagent Systems. II, Autom. Remote Control, 2019, vol. 80, no. 5, pp. 791–813.Google Scholar
  3. 3.
    Kozyakin, V., An Annotated Bibliography on Convergence of Matrix Products and the Theory of Joint/Generalized Spectral Radius, Preprint, Moscow: Inst. Inform. Transmis. Probl., 2013. DOI: Scholar
  4. 4.
    Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1967.zbMATHGoogle Scholar
  5. 5.
    Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge: Cambridge Univ. Press, 1985. Translated under the title Matrichnyi analiz, Moscow: Mir, 1989.zbMATHGoogle Scholar
  6. 6.
    Kozyakin, V.S., Algebraic Unsolvability of Problem of Absolute Stability of Desynchronized Systems, Autom. Remote Control, 1990, vol. 51, no. 6, pp. 754–759.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Blondel, V.D. and Tsitsiklis, J.N., When is a Pair of Matrices Mortal?, Inform. Process. Lett., 1997, vol. 63, no. 5, pp. 283–286. DOI: MathSciNetzbMATHGoogle Scholar
  8. 8.
    Tsitsiklis, J.N. and Blondel, V.D., The Lyapunov Exponent and Joint Spectral Radius of Pairs of Matrices Are Hard—When Not Impossible—to Compute and to Approximate, Math. Control Signals Syst., 1997, vol. 10, no. 1, pp. 31–40. DOI: MathSciNetzbMATHGoogle Scholar
  9. 9.
    Tsitsiklis, J.N. and Blondel, V.D., Lyapunov Exponents of Pairs of Matrices. A Correction: “The Lyapunov Exponent and Joint Spectral Radius of Pairs of Matrices Are Hard—When Not Impossible—to Compute and to Approximate,” Math. Control Signals Syst., 1997, vol. 10, no. 4, pp. 381. DOI: MathSciNetzbMATHGoogle Scholar
  10. 10.
    Blondel, V.D. and Tsitsiklis, J.N., The Boundedness of All Products of a Pair of Matrices Is Undecidable, Syst. Control Lett., 2000, vol. 41, no. 2, pp. 135–140. DOI: MathSciNetzbMATHGoogle Scholar
  11. 11.
    Jungers, R., The Joint Spectral Radius, vol. 385 of Lecture Notes in Control and Information Sciences, Berlin: Springer-Verlag, 2009. DOI:
  12. 12.
    Gripenberg, G., Computing the Joint Spectral Radius, Linear Algebra Appl., 1996, vol. 234, pp. 43–60. DOI: MathSciNetzbMATHGoogle Scholar
  13. 13.
    Maesumi, M., Calculating the Spectral Radius of a Set of Matrices, in Wavelet Analysis and Multiresolution Methods (Urbana-Champaign, IL, 1999), New York: Dekker, 2000, vol. 212 of Lecture Notes Pure Appl. Math., pp. 255–272.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Blondel, V.D. and Nesterov, Yu., Computationally Efficient Approximations of the Joint Spectral Radius, SIAM J. Matrix Anal. Appl., 2005, vol. 27, no. 1, pp. 256–272 (electronic). DOI: MathSciNetzbMATHGoogle Scholar
  15. 15.
    Parrilo, P.A. and Jadbabaie, A., Approximation of the Joint Spectral Radius of a Set of Matrices Using Sum of Squares, Hybrid Systems: Computation and Control, Berlin: Springer, 2007, vol. 4416 of Lecture Notes Comput. Sci., pp. 444–458. DOI: MathSciNetzbMATHGoogle Scholar
  16. 16.
    Guglielmi, N. and Zennaro, M., An Algorithm for Finding Extremal Polytope Norms of Matrix Families, Linear Algebra Appl., 2008, vol. 428, no. 10, pp. 2265–2282. DOI: MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kozyakin, V., Iterative Building of Barabanov Norms and Computation of the Joint Spectral Radius for Matrix Sets, Discret. Contin. Dyn. Syst. Ser. B, 2010, vol. 14, no. 1, pp. 143–158. DOI: MathSciNetzbMATHGoogle Scholar
  18. 18.
    Chang, C.-T. and Blondel, V., Approximating the Joint Spectral Radius Using a Genetic Algorithm Framework, Proc. 18 IFAC World Congr., IFAC, 2011, vol. 18, pp. 1, pp. 8681–8686.Google Scholar
  19. 19.
    Kozyakin, V., A Relaxation Scheme for Computation of the Joint Spectral Radius of Matrix Sets, J. Difference Equat. Appl., 2011, vol. 17, no. 2, pp. 185–201. DOI: MathSciNetzbMATHGoogle Scholar
  20. 20.
    Vankeerberghen, G., Hendrickx, J., Jungers, R., et al., The JSR Toolbox, MATLAB® Central, 2011. zbMATHGoogle Scholar
  21. 21.
    Cicone, A. and Protasov, V., Joint Spectral Radius Computation, MATLAB® Central, 2012. Google Scholar
  22. 22.
    Ahmadi, A.A. and Jungers, R.M., Switched Stability of Nonlinear Systems via SOS-Convex Lyapunov Functions and Semidefinite Programming, Proc. 52. IEEE Ann. Conf. Decision. Control (CDC), 2013, pp. 727–732. DOI: Google Scholar
  23. 23.
    Bajovic, D., Xavier, J., Moura, J.M.F., and Sinopoli, B., Consensus and Products of Random Stochastic Matrices: Exact Rate for Convergence in Probability, IEEE Transact. Signal Proc., 2013, vol. 61, no. 10, pp. 2557–2571. DOI: MathSciNetzbMATHGoogle Scholar
  24. 24.
    Chang, C.-T. and Blondel, V.D., An Experimental Study of Approximation Algorithms for the Joint Spectral Radius, Numer. Algorithms, 2013, vol. 64, no. 1, pp. 181–202. DOI: MathSciNetzbMATHGoogle Scholar
  25. 25.
    Guglielmi, N. and Protasov, V., Exact Computation of Joint Spectral Characteristics of Linear Operators, Found. Comput. Math., 2013, vol. 13, no. 1, pp. 37–97. DOI: MathSciNetzbMATHGoogle Scholar
  26. 26.
    Vankeerberghen, G., Hendrickx, J., and Jungers, R.M., JSR: A Toolbox to Compute the Joint Spectral Radius, Proc. 17. Int. Conf. Hybrid Syst.: Comput. Control, HSCC'14, New York: ACM, 2014, pp. 151–156. DOI: Google Scholar
  27. 27.
    Chevalier, P.-Y., Hendrickx, J.M., and Jungers, R.M., Efficient Algorithms for the Consensus Decision Problem, SIAM J. Control Optim., 2015, vol. 53, no. 5, pp. 3104–3119. DOI: MathSciNetzbMATHGoogle Scholar
  28. 28.
    Protasov, V.Yu., Spectral Simplex Method, Math. Program., 2016, vol. 156, no. 1–2, Ser. A, pp. 485–511. DOI: MathSciNetzbMATHGoogle Scholar
  29. 29.
    Kozyakin, V.S., Constructive Stability and Stabilizability of Positive Linear Discrete-Time Switching Systems, J. Commun. Technol. Electron., 2017, vol. 62, no. 6, pp. 686–693. DOI: Google Scholar
  30. 30.
    Kleptsyn, A.F., Kozyakin, V.S., Krasnosel'skii, M.A., and Kuznetsov, N.A., Stability of Desynchronized Systems, Dokl. Akad. Nauk USSR, 1984, vol. 274, no. 5, pp. 1053–1056.MathSciNetzbMATHGoogle Scholar
  31. 31.
    Barabanov, N.E., The Lyapunov Indicator of Discrete Inclusions. I–III, Autom. Remote Control, 1988, vol. 49, no. 2, pp. 152–157; no. 3, pp. 283–287; no. 5, pp. 558–565.zbMATHGoogle Scholar
  32. 32.
    Kozyakin, V.S., Absolute Stability of Systems with Asynchronous Sampled-Data Elements, Autom. Remote Control, 1990, vol. 51, no. 10, pp. 1349–1355.zbMATHGoogle Scholar
  33. 33.
    Gurvits, L., Stability of Discrete Linear Inclusion, Linear Algebra Appl., 1995, vol. 231, pp. 47–85. DOI: MathSciNetzbMATHGoogle Scholar
  34. 34.
    Kozyakin, V., A Short Introduction to Asynchronous Systems, Proc. Sixth Int. Conf. Difference Equat., Boca Raton: CRC, 2004, pp. 153–165.Google Scholar
  35. 35.
    Shorten, R., Wirth, F., Mason, O., et al., Stability Criteria for Switched and Hybrid Systems, SIAM Rev., 2007, vol. 49, no. 4, pp. 545–592. DOI: MathSciNetzbMATHGoogle Scholar
  36. 36.
    Lin, H. and Antsaklis, P.J., Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results, IEEE Trans. Automat. Control, 2009, vol. 54, no. 2, pp. 308–322. DOI: MathSciNetzbMATHGoogle Scholar
  37. 37.
    Fornasini, E. and Valcher, M.E., Stability and Stabilizability Criteria for Discrete-Time Positive Switched Systems, IEEE Trans. Automat. Control, 2012, vol. 57, no. 5, pp. 1208–1221. DOI: MathSciNetzbMATHGoogle Scholar
  38. 38.
    Rota, G.-C. and Strang, G., A Note on the Joint Spectral Radius, Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math, 1960, vol. 22, pp. 379–381.MathSciNetzbMATHGoogle Scholar
  39. 39.
    Theys, J., Joint Spectral Radius: Theory and Approximations, PhD Dissertation, Faculté des sciences appliquées, Département d'ingénierie mathématique, Center for Systems Engineering and Applied Mechanics., Université Catholique de Louvain, 2005. Google Scholar
  40. 40.
    Shen, J. and Hu, J., Stability of Discrete-Time Switched Homogeneous Systems on Cones and Conewise Homogeneous Inclusions, SIAM J. Control Optim., 2012, vol. 50, no. 4, pp. 2216–2253. DOI: MathSciNetzbMATHGoogle Scholar
  41. 41.
    Bochi, J. and Morris, I.D., Continuity Properties of the Lower Spectral Radius, Proc. Lond. Math. Soc. (3), 2015, vol. 110, no. 2, pp. 477–509. DOI: MathSciNetzbMATHGoogle Scholar
  42. 42.
    Czornik, A., On the Generalized Spectral Subradius, Linear Algebra Appl., 2005, vol. 407, pp. 242–248. DOI: MathSciNetzbMATHGoogle Scholar
  43. 43.
    Bousch, T. and Mairesse, J., Asymptotic Height Optimization for Topical IFS, Tetris Heaps, and the Finiteness Conjecture, J. Am. Math. Soc., 2002, vol. 15, no. 1, pp. 77–111 (electronic). DOI: MathSciNetzbMATHGoogle Scholar
  44. 44.
    Blondel, V.D., Theys, J., and Vladimirov, A.A., Switched Systems that are Periodically Stable may be Unstable, Proc. Sympos. MTNS, Notre-Dame, USA: 2002, Google Scholar
  45. 45.
    Kozyakin, V., A Dynamical Systems Construction of a Counterexample to the Finiteness Conjecture, Proc. 44 IEEE Conf. Decision Control, 2005 and 2005 Eur. Control Conf., CDC-ECC'05, 2005, pp. 2338–2343. DOI: Google Scholar
  46. 46.
    Czornik, A. and Jurgaś, P., Falseness of the Finiteness Property of the Spectral Subradius, Int. J. Appl. Math. Comput. Sci., 2007, vol. 17, no. 2, pp. 173–178. DOI: MathSciNetzbMATHGoogle Scholar
  47. 47.
    Blondel, V.D. and Nesterov, Yu., Polynomial-Time Computation of the Joint Spectral Radius for Some Sets of Nonnegative Matrices, SIAM J. Matrix Anal. Appl., 2009, vol. 31, no. 3, pp. 865–876. DOI: MathSciNetzbMATHGoogle Scholar
  48. 48.
    Duffin, R.J., Topology of Series-Parallel Networks, J. Math. Anal. Appl., 1965, vol. 10, pp. 303–318. DOI: MathSciNetzbMATHGoogle Scholar
  49. 49.
    Eppstein, D., Parallel Recognition of Series-Parallel Graphs, Inform. Comput., 1992, vol. 98, no. 1, pp. 41–55. DOI: MathSciNetzbMATHGoogle Scholar
  50. 50.
    Dai, X., Robust Periodic Stability Implies Uniform Exponential Stability of Markovian Jump Linear Systems and Random Linear Ordinary Differential Equations, J. Franklin Inst., 2014, vol. 351, no. 5, pp. 2910–2937. DOI: MathSciNetzbMATHGoogle Scholar
  51. 51.
    Kozyakin, V., The Berger-Wang Formula for the Markovian Joint Spectral Radius, Linear Algebra Appl., 2014, vol. 448, pp. 315–328. DOI: MathSciNetzbMATHGoogle Scholar
  52. 52.
    Kozyakin, V., Matrix Products with Constraints on the Sliding Block Relative Frequencies of Different Factors, Linear Algebra Appl., 2014, vol. 457, pp. 244–260. DOI: MathSciNetzbMATHGoogle Scholar
  53. 53.
    Shih, M.-H., Wu, J.-W., and Pang, C.-T., Asymptotic Stability and Generalized Gelfand Spectral Radius Formula, Linear Algebra Appl., 1997, vol. 252, pp. 61–70. DOI: MathSciNetzbMATHGoogle Scholar
  54. 54.
    Daubechies, I. and Lagarias, J.C., Sets of Matrices All Infinite Products of Which Converge, Linear Algebra Appl., 1992, vol. 161, pp. 227–263. DOI: MathSciNetzbMATHGoogle Scholar
  55. 55.
    Daubechies, I. and Lagarias, J.C., Corrigendum/Addendum to: “Sets of Matrices All Infinite Products of Which Converge” [Linear Algebra Appl., vol. 161 (1992), pp. 227-263; MR1142737 (93f:15006)], Linear Algebra Appl., 2001, vol. 327, no. 1–3, pp. 69–83. DOI: MathSciNetzbMATHGoogle Scholar
  56. 56.
    Berger, M.A. and Wang, Y., Bounded Semigroups of Matrices, Linear Algebra Appl., 1992, vol. 166, pp. 21–27. DOI: MathSciNetzbMATHGoogle Scholar
  57. 57.
    Katok, A.B. and Khassel'blat, B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem (Introduction to the Modern Theory of Dynamical Systems), Moscow: Faktorial, 1999.Google Scholar
  58. 58.
    Kitchens, B.P., Symbolic Dynamics, Berlin: Springer-Verlag, 1998. DOI: zbMATHGoogle Scholar
  59. 59.
    Fekete, M., Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z, 1923, vol. 17, no. 1, pp. 228–249. DOI: MathSciNetzbMATHGoogle Scholar
  60. 60.
    Polya, G. and Szego, G., Problems and Theorems in Analysis I, New York: Springer-Verlag, 1972. Translated under the title Zadachi i teoremy iz analiza. I, Moscow: Nauka, 1978.zbMATHGoogle Scholar
  61. 61.
    Elsner, L., The Generalized Spectral-Radius Theorem: An Analytic-Geometric Proof, Linear Algebra Appl., 1995, vol. 220, pp. 151–159, Proc. Workshop “Nonnegat. Matric., Appl. General.” and the Eighth Haifa Matrix Theory Conf. (Haifa, 1993). DOI:
  62. 62.
    Bochi, J., Inequalities for Numerical Invariants of Sets of Matrices, Linear Algebra Appl., 2003, vol. 368, pp. 71–81. DOI: MathSciNetzbMATHGoogle Scholar
  63. 63.
    Dai, X., Extremal and Barabanov Semi-Norms of a Semigroup Generated by a Bounded Family of Matrices, J. Math. Anal. Appl., 2011, vol. 379, no. 2, pp. 827–833. DOI: MathSciNetzbMATHGoogle Scholar
  64. 64.
    Protasov, V., Applications of the Joint Spectral Radius to Some Problems of Functional Analysis, Probability and Combinatorics, Proc. 44. IEEE Conf. Decision. Control Eur. Control Conf. 2005, Seville, Spain, December 12–15, 2005, pp. 3025–3030.Google Scholar
  65. 65.
    Jungers, R.M., Protasov, V., and Blondel, V.D., Efficient Algorithms for Deciding the Type of Growth of Products of Integer Matrices, Linear Algebra Appl., 2008, vol. 428, no. 10, pp. 2296–2311. DOI: MathSciNetzbMATHGoogle Scholar
  66. 66.
    Guglielmi, N. and Zennaro, M., Stability of Linear Problems: Joint Spectral Radius of Sets of Matrices, Current Challeng. Stabil. Issues Numer. Differ. Equat., Springer, 2014, Lecture Notes. Math, pp. 265–313. DOI: Google Scholar
  67. 67.
    Dai, X., Huang, Y., and Xiao, M., Almost Sure Stability of Discrete-Time Switched Linear Systems: A Topological Point of View, SIAM J. Control Optim., 2008, vol. 47, no. 4, pp. 2137–2156. DOI: MathSciNetzbMATHGoogle Scholar
  68. 68.
    Dai, X., Huang, Y., and Xiao, M., Periodically Switched Stability Induces Exponential Stability of Discrete-Time Linear Switched Systems in the Sense of Markovian Probabilities, Automatica J. IFAC, 2011, vol. 47, no. 7, pp. 1512–1519. DOI: MathSciNetzbMATHGoogle Scholar
  69. 69.
    MacKay, D.J.C., Information Theory, Inference and Learning Algorithms, New York: Cambridge Univer. Press, 2003. zbMATHGoogle Scholar
  70. 70.
    Moision, B.E., Orlitsky, A., and Siegel, P.H., Bounds on the Rate of Codes Which Forbid Specified Difference Sequences, Global Telecom. Conf. GLOBECOM '99, Rio de Janeiro, 1999, vol. 1b, pp. 878–882.Google Scholar
  71. 71.
    Moision, B.E., Orlitsky, A., and Siegel, P.H., On Codes That Avoid Specified Differences, IEEE Trans. Inform. Theory, 2001, vol. 47, no. 1, pp. 433–442. DOI: MathSciNetzbMATHGoogle Scholar
  72. 72.
    Immink, K.A.S., Codes for Mass Data Storage Systems, Eindhoven, The Netherlands: Shannon Foundation Publishers, 2004, 2nd ed. Google Scholar
  73. 73.
    Lind, D. and Marcus, B., An Introduction to Symbolic Dynamics and Coding, Cambridge: Cambridge Univ. Press, 1995. DOI: zbMATHGoogle Scholar
  74. 74.
    Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Cambridge: Cambridge Univer. Press, 1995, vol. 54 of Encyclop. Math. Appl.Google Scholar
  75. 75.
    Choi, Y. and Szpankowski, W., Pattern Matching in Constrained Sequences, Proc. IEEE Int. Sympos. Inform. Theory 2007 (ISIT), Nice, France, June 24–29, 2007, pp. 2606–2610. DOI: Google Scholar
  76. 76.
    Ferenczi, S. and Monteil, T., Infinite Words with Uniform Frequencies, and Invariant Measures, Combinat., Automat. Number Theory, Cambridge: Cambridge Univ. Press, 2010, vol. 135 of Encyclop. Math. Appl., pp. 373–409. MathSciNetzbMATHGoogle Scholar
  77. 77.
    Kozyakin, V., Minimax Joint Spectral Radius and Stabilizability of Discrete-Time Linear Switching Control Systems, Discrete Contin. Dyn. Syst. Ser. B, 2018, vol. 22, no. 1531–3492_2017_11_206, p. 20, First online. DOI: Google Scholar
  78. 78.
    Dai, X., A Gel'fand-Type Spectral-Radius Formula and Stability of Linear Constrained Switching Systems, Linear Algebra Appl., 2012, vol. 436, no. 5, pp. 1099–1113. DOI: MathSciNetzbMATHGoogle Scholar
  79. 79.
    Jungers, R.M., On Asymptotic Properties of Matrix Semigroups with an Invariant Cone, Linear Algebra Appl., 2012, vol. 437, no. 5, pp. 1205–1214. DOI: MathSciNetzbMATHGoogle Scholar
  80. 80.
    Dai, X., Huang, Y., and Xiao, M., Pointwise Stability of Descrete-Time Stationary Matrix-Valued Markovian Processes, IEEE Trans. Automat. Control, 2015, vol. 60, no. 7, pp. 1898–1903. DOI: MathSciNetzbMATHGoogle Scholar
  81. 81.
    Jungers, R.M. and Mason, P., On Feedback Stabilization of Linear Switched Systems via Switching Signal Control, SIAM J. Control Optim., 2017, vol. 55, no. 2, pp. 1179–1198. DOI: MathSciNetzbMATHGoogle Scholar
  82. 82.
    Sun, Z. and Ge, S.S., Switched Linear Systems: Control and Design, Communications and Control Engineering, London: Springer, 2005.zbMATHGoogle Scholar
  83. 83.
    Stanford, D.P. and Urbano, J.M., Some Convergence Properties of Matrix Sets, SIAM J. Matrix Anal. Appl., 1994, vol. 15, no. 4, pp. 1132–1140. DOI: MathSciNetzbMATHGoogle Scholar
  84. 84.
    Stanford, D.P., Stability for a Multi-Rate Sampled-Data System, SIAM J. Control Optim,, 1979, vol. 17, no. 3, pp. 390–399. DOI: MathSciNetzbMATHGoogle Scholar
  85. 85.
    Dai, X., Huang, Y., Liu, J., and Xiao, M., The Finite-Step Realizability of the Joint Spectral Radius of a Pair of d × d Matrices One of Which Being Rank-One, Linear Algebra Appl., 2012, vol. 437, no. 7, pp. 1548–1561. DOI: MathSciNetzbMATHGoogle Scholar
  86. 86.
    Dai, X., Some Criteria for Spectral Finiteness of a Finite Subset of the Real Matrix Space Rd×d, Linear Algebra Appl., 2013, vol. 438, no. 6, pp. 2717–2727. DOI: MathSciNetzbMATHGoogle Scholar
  87. 87.
    Asarin, E., Cervelle, J., Degorre, A., et al., Entropy Games and Matrix Multiplication Games, 33rd Sympos. Theoret. Aspect. Comput. Sci., (STACS 2016), Ollinger, N. and Vollmer H., Eds., vol. 47 of LIPIcs, Leibniz Int. Proc. Inform, Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016, pp. 11:1–11:14. DOI: MathSciNetzbMATHGoogle Scholar
  88. 88.
    Bouyer, P., Markey, N., Randour, M., et al., Average-Energy Games, Acta Inform., 2016, July, pp. 1–37. DOI: Google Scholar
  89. 89.
    Kozyakin, V.S., Constructive Stability and Stabilizability for Positive Linear Switching Systems with Discrete Time, Inform. Prots., 2016, vol. 16, no. 2, pp. 194–206. Scholar
  90. 90.
    Kozyakin, V., Minimax Theorem for the Spectral Radius of the Product of Non-Negative Matrices, Linear Multilinear Algebra, 2017, vol. 65, no. 11, pp. 2356–2365. DOI: MathSciNetzbMATHGoogle Scholar
  91. 91.
    Heil, C. and Strang, G., Continuity of the Joint Spectral Radius: Application to Wavelets, Linear algebra for signal processing (Minneapolis, MN, 1992), New York: Springer, 1995, vol. 69 of IMA Vol. Math. Appl., pp. 51–61.MathSciNetzbMATHGoogle Scholar
  92. 92.
    Wirth, F., The Generalized Spectral Radius and Extremal Norms, Linear Algebra Appl., 2002, vol. 342, pp. 17–40. DOI: MathSciNetzbMATHGoogle Scholar
  93. 93.
    Kozyakin, V., An Explicit Lipschitz Constant for the Joint Spectral Radius, Linear Algebra Appl., 2010, vol. 433, no. 1, pp. 12–18. DOI: MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.Kotelnikov Institute of Radioengineering and ElectronicsRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyMoscowRussia
  4. 4.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations