Advertisement

Automation and Remote Control

, Volume 80, Issue 1, pp 150–163 | Cite as

Data Exchange with Adaptive Coding between Quadrotors in a Formation

  • K. S. AmelinEmail author
  • B. R. Andrievsky
  • S. I. Tomashevich
  • A. L. Fradkov
Large Scale Systems Control
  • 6 Downloads

Abstract

In this paper, we present and numerically study an adaptive coding procedure for data transfer among quadrotors moving in a formation. The quadrotor’s parameters are identified using experimental data from a digital communication channel with limited bandwidth. We compare the obtained results with theoretical expectations and illustrate the efficiency of the adaptive coding procedure.

Keywords

cooperative control control over communication networks data transfer quadrotor estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amelina, N.O., Multiagent Technologies, Adaptation, Self-Organization, Reaching Consensus, Stokh. Optim. Informat., 2011, vol. 7, no. 1, pp. 149–185.Google Scholar
  2. 2.
    Andrievskii, B.R., Matveev, A.S., and Fradkov, A.S., Control and Estimation under Information Constraints: Toward a Unified Theory of Control, Computation and Communications, Autom. Remote Control, 2010, vol. 71, no. 4, pp. 572–633.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Andrievskii, B.R., Stotskii, A.A., and Fradkov, A.L., Speed-Gradient Algorithms in Control and Adaptation Problems, Autom. Remote Control, 1988, vol. 49, no. 12, pp. 1533–1564.Google Scholar
  4. 4.
    Andrievskii, B.R. and Fradkov, A.L., Control and Monitoring over the Channels of Communication with a Limited Carrying Capacity, Girosk. Navigats., 2009, vol. 67, no. 4, pp. 103–114.Google Scholar
  5. 5.
    Besekerskii, V.A and Popov, E.P., Teoriya sistem avtomaticheskogo upravleniya (Theory of Automatic Control Systems), St. Petersburg: Professiya, 2003, 4th ed., revised and complemented.Google Scholar
  6. 6.
    Dzhunusov, I.A. and Fradkov, A.L., Adaptive Synchronization of a Network of Interconnected Nonlinear Lur’e Systems, Autom. Remote Control, 2009, vol. 70, no. 7, pp. 1190–1205.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dzhunusov, I.A. and Fradkov, A.L., Synchronization in Networks of Linear Agents with Output Feedbacks, Autom. Remote Control, 2011, vol. 72, no. 8, pp. 1615–1626.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ljung, L., System Identification: Theory for the User, Englewood Cliffs: Prentice Hall, 1987. Translated under the title Identifikatsiya sistem. Teoriya dlya pol’zovatelya, Moscow: Nauka, 1991.zbMATHGoogle Scholar
  9. 9.
    Nelineinye sistemy. Chastotnye i matrichnye neravenstva (Nonlinear Systems. Frequency and Matrix Inequalities), Gelig, A.Kh., Leonov, G.A., and Fradkov, A.L., Eds., Moscow: Fizmatlit, 2008.Google Scholar
  10. 10.
    Proskurnikov, A.V., Frequency-Domain Criteria for Consensus in Multiagent Systems with Nonlinear Sector-Shaped Couplings, Autom. Remote Control, 2014, vol. 75, no. 11, pp. 1982–1995.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Furtat, I.B., Consensus Output Control for a Linear Dynamical Network with Disturbance Compensation, Mekhatronika, Avtomatiz., Upravlen., 2011, no. 4, pp. 12–18.Google Scholar
  12. 12.
    Abdallah, C. and Tanner, H., Complex Networked Control Systems: Introduction to the Special Section, IEEE Control Syst. Mag., 2007, vol. 27, no. 4, pp. 3–32.CrossRefGoogle Scholar
  13. 13.
    Altug, E., Ostrowski, J., and Mahony, R., Control of a Quadrotor Helicopter Using Visual Feedback, Proc. IEEE Int. Conf. on Robotics and Automation, Washington: IEEE Press, 2002, pp. 72–76.Google Scholar
  14. 14.
    Andrievsky, B., Adaptive Coding for Transmission of Position Information over the Limited-Band Communication Channel, Proc. 9th IFAC Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP’2007), St. Petersburg: IFAC, 2007. www.ifacpapersonline.net/Detailed/38673.htmlGoogle Scholar
  15. 15.
    Andrievsky, B., Fradkov, A., and Peaucelle, D., State Estimation over the Limited-Band Communication Channel for Pitch Motion Control of LAAS Helicopter Benchmark, Proc. 17th IFAC Symp. Automatic Control in Aerospace (ACA’2007), Toulouse, France, 2007. http://www.ifacpapersonline. net/Detailed/38673.htmlGoogle Scholar
  16. 16.
    Andrievsky, B. and Fradkov, A.L., Adaptive Coding for Maneuvering UAV Tracking Over the Digital Communication Channel, Proc. 6th Int. Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT 2014), St. Petersburg: IEEE Press, 2014, pp. 325–330.Google Scholar
  17. 17.
    Andrievsky, B. and Tomashevich, S., Passification Based Signal-Parametric Adaptive Controller for Agents in Formation, IFAC-PapersOnLine, 2015, vol. 48, no. 11, pp. 222–226.CrossRefGoogle Scholar
  18. 18.
    Bazzi, L. and Mitter, S., Endcoding Complexity Versus Minimum Distance, IEEE Trans. Inform. Theory, 2005, vol. 51, no. 6, pp. 2103–2112.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bondarko, V., Stabilization of Linear Systems via a Two-Way Channel under Information Constraints, Cybern. Phys., 2014, vol. 3, no. 4, pp. 157–160.Google Scholar
  20. 20.
    Brockett, R. and Liberzon, D., Quantized Feedback Stabilization of Linear Systems, IEEE Trans. Automat. Control, 2000, vol. 45, no. 7, pp. 1279–1289.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Castillo, G.P., Lozano, R., and Dzul, A.E., Modelling and Control of Mini-Flying Machines, Advances in Industrial Control, London: Springer-Verlag, 2005.zbMATHGoogle Scholar
  22. 22.
    Das, A., Subbarao, K., and Lewis, F., Dynamic Inversion of Quadrotor with Zero-Dynamics Stabilization, Proc. 17th IEEE Int. Conf. on Control Applications, Part of 2008 IEEE Multi-conference on Systems and Control (MSC 2008), San Antonio: IEEE Press, 2008.Google Scholar
  23. 23.
    Fantoni, I. and Lozano, R., Non-linear Control for Underactuated Mechanical Systems, Communications and Control Engineering, Sontag, E. and Thoma, M., Eds., London: Springer-Verlag, 2002.Google Scholar
  24. 24.
    Fax, J. and Murray, R., Information Flow and Cooperative Control of Vehicle Formations, IEEE Trans. Automat. Control, 2004, vol. 8, pp. 1465–1476.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Fradkov, A., Passification of Nonsquare Linear Systems and Yakubovich–Kalman–Popov Lemma, Eur. J. Control, 2003, vol. 6, pp. 573–582.zbMATHGoogle Scholar
  26. 26.
    Fradkov, A., Andrievsky, B., and Peaucelle, D., Estimation and Control under Information Constraints for LAAS Helicopter Benchmark, IEEE Trans. Contr. Syst. Technol., 2010, vol. 18, no. 5, pp. 1180–1187.CrossRefzbMATHGoogle Scholar
  27. 27.
    Fradkov, A. and Junussov, I., Synchronization of Networks of Linear Systems by Static Output Feedback, Proc. 50th IEEE Conf. Dec. Contr. (CDC 2011), Orlando, 2011, pp. 8188–8192.Google Scholar
  28. 28.
    Gomez-Estern, F., Canudas de Wit, C., and Rubio, F., Adaptive Delta Modulation in Networked Controlled Systems with Bounded Disturbances, IEEE Trans. Automat. Control, 2011, vol. 56, no. 1. pp. 129–134.Google Scholar
  29. 29.
    Goodman, D. and Gersho, A., Theory of an Adaptive Quantizer, IEEE Trans. Commun., 1974, vol. COM-22, no. 8, pp. 1037–1045.CrossRefGoogle Scholar
  30. 30.
    Goodwin, G., Lau, K., and Cea, M., Control with Communication Constraints, Proc. 12th Int. Conf. on Control Automation Robotics and Vision (ICARCV 2012), Guangzhou, 2012, pp. 1–10.Google Scholar
  31. 31.
    Goodwin, G., Haimovich, H., Quevedo, D., and Welsh, J., A Moving Horizon Approach to Networked Control System Design, IEEE Trans. Automat. Control, 2004, vol. 49, no. 9, pp. 1427–1445.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Ishii, H. and Francis, B., Limited Data Rate in Control Systems with Networks, New York: Springer-Verlag, 2002.zbMATHGoogle Scholar
  33. 33.
    Jadbabaie, A., Lin, J., and Morse, A.S., Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules, IEEE Trans. Autom. Control, 2003, vol. 48, no. 6, pp. 988–1001.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Janusz, W.C., Czyba, R., and Szafrański, G., Model Identification and Data Fusion for the Purpose of the Altitude Control of the VTOL Aerial Robot, Proc. 2nd IFAC Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS 2013), Compiegne, France: IFAC, 2013, pp. 263–269.Google Scholar
  35. 35.
    Leishman, J., Principles of Helicopter Aerodynamics, New York: Cambridge Univ. Press, 2006, 2nd ed.Google Scholar
  36. 36.
    Leonard, N.E. and Fiorelli, E., Virtual Leaders, Artificial Potentials, and Coordinated Control of Groups, Proc. 40th IEEE Conf. Decision and Control (CDC 2001), 2001, pp. 2968–2973.Google Scholar
  37. 37.
    Li, Z., Ren, W., Liu, X., and Fu, M., Distributed Containment Control of Multi-Agent Systems with General Linear Dynamics in the Presence of Multiple Leaders, Int. J. Robust Nonlin. Control, 2013, vol. 23, pp. 534–547.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Matveev, A. and Savkin, A., Estimation and Control over Communication Networks, Boston: Birkhäuser, 2009.zbMATHGoogle Scholar
  39. 39.
    Nair, G., Evans, R., Mareels, I., Moran, W., Topological Feedback Entropy and Nonlinear Stabilization, IEEE Trans. Automat. Control, 2004, vol. 49, no. 9, pp. 1585–1597.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Nair, G. and Evans, R., Exponential Stabilisability of Finite-dimensional Linear Systems with Limited Data Rates, Automatica, 2003, vol. 39, pp. 585–593.MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Nair, G., Evans, R., and Caines, P., Stabilising Decentralised Linear Systems under Data Rate Constraints, Proc. 43rd IEEE Conf. on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004, pp. 3992–3997.Google Scholar
  42. 42.
    Nair, G., Fagnani, F., Zampieri, S., and Evans, R., Feedback Control under Data Rate Constraints: An Overview, Proc. IEEE, 2007, vol. 95, no. 1, pp. 108–137.CrossRefGoogle Scholar
  43. 43.
    Ni, W. and Cheng, D., Leader-Following Consensus of Multi-Agent Systems under Fixed and Switching Topologies, Syst. Control Lett., 2010, vol. 59, no. 3–4, pp. 209–217.Google Scholar
  44. 44.
    Olfati-Saber, R., Fax, J.A., and Murray, R.M., Consensus and Cooperation in Network Multi-Agent System, Proc. IEEE, 2007, vol. 95, pp. 215–233.CrossRefzbMATHGoogle Scholar
  45. 45.
    Porfiri, M., Roberson, D., and Stilwell, D., Tracking and Formation Control of Multiple Autonomous Agents: A Two-Level Consensus Approach, Automatica, 2007, vol. 43, no. 8, pp. 1318–1328.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Ren, W. and Beard, R.W., Distributed Consensus in Multivehicle Cooperative Control, London: Springer-Verlag, 2008.CrossRefzbMATHGoogle Scholar
  47. 47.
    Savkin, A. and Cheng, T., Detectability and Output Feedback Stabilizability of Nonlinear Networked Control Systems, IEEE Trans. Automat. Control, 2007, vol. 52, no. 4, pp. 730–735.MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Tatikonda, S. and Mitter, S., Control under Communication Constraints, IEEE Trans. Automat. Control, 2004, vol. 49, no. 7, pp. 1056–1068.MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Wu, Z., Guan, Z., Wu, X., and Li, T., Consensus Based Formation Control and Trajectory Tracing of Multi-Agent Robot Systems J. Intell. Robotic Syst., 2007, vol. 48, no. 3, pp. 397–410.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. S. Amelin
    • 1
    Email author
  • B. R. Andrievsky
    • 1
    • 2
    • 3
  • S. I. Tomashevich
    • 1
    • 3
  • A. L. Fradkov
    • 1
    • 2
    • 3
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Problems of Mechanical Engineering (IPME)Russian Academy of SciencesSt.PetersburgRussia
  3. 3.ITMO UniversitySt. PetersburgRussia

Personalised recommendations