Advertisement

Automation and Remote Control

, Volume 80, Issue 1, pp 81–92 | Cite as

A New Algorithm for Solving a Special Matching Problem with a General Form Value Function under Constraints

  • D. V. UzhegovEmail author
  • A. A. Anan’ev
  • P. V. Lomovitskii
  • A. N. Khlyupin
Control in Technical Systems
  • 15 Downloads

Abstract

We consider the assignment problem with a special structure with a general form value function and constraints prohibiting certain matchings. In this case, the matching cost may be undefined until some permutation is found. We formulate the problem in terms of graph theory and reduce it to finding a minimal cost path in a graph with nonlocal edge weights. The proposed method for solving the problem is a modification of the Dijkstra’s shortest path algorithm in a weighted directed graph. This research is motivated by well drilling applications. We also show the analysis of our numerical experiments.

Keywords

quadratic assignment problem invalid matchings shortest path in a graph Dijkstra’s algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lovász, L. and Plummer, M., Matching Theory, Amsterdam: Elsevier, 1986. Translated under the title Prikladnye zadachi teorii grafov. Teoriya parosochetanii v matematike, fizike, khimii, Moscow: Mir, 1998.Google Scholar
  2. 2.
    Dantzig, G.B., Linear Programming and Extensions, Princeton: Princeton Univ. Press, 1963.zbMATHGoogle Scholar
  3. 3.
    Barr, R.S., Glover, F., and Klingman, D., The Alternating Basis Algorithm for Assignment Problems, Math. Program., 1977, vol. 13, no. 1, pp. 1–13.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Kuhn, H.W., The Hungarian Method for the Assignment Problem, Naval Res. Logist. (NRL), 1955, vol. 2, no. 1–2, pp. 83–97.Google Scholar
  5. 5.
    Bertsekas, D.P., A New Algorithm for the Assignment Problem, Math. Program., 1981, vol. 21, no. 1, pp. 152–171.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hamdy, A.T., Operations Research: An Introduction, Upper Saddle River: Prentice Hall, 2002, 7th ed. Translated under the title Vvedenie v issledovanie operatsii, Moscow: Vil’yams, 2007.zbMATHGoogle Scholar
  7. 7.
    Burkard, R.E. and Cela, E., Linear Assignment Problems and Extensions, in Handbook Combinat. Optim., New York: Springer, 1999, pp. 75–149.Google Scholar
  8. 8.
    Koopmans, T.C. and Beckmann, M., Assignment Problems and the Location of Economic Activities, Econometrica: J. Econometric Soc., 1957, vol. 25, no. 1, pp. 53–76.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Sahni, S. and Gonzalez, T., P-Complete Approximation Problems, J. ACM (JACM), 1976, vol. 23, no. 3, pp. 555–565.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hardy, G.H., Littlewood, J.E., and Polya, G., The Maximum of a Certain Bilinear Form, Proc. London Math. Soc., 1926, vol. 2, no. 1, pp. 265–282.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Burkard, R.E., Cela, E., Rote, G., and Woeginger, G.J., The Quadratic Assignment Problem with a Monotone Anti-Monge and a Symmetric Toeplitz Matrix: Easy and Hard Cases, Math. Program., 1998, vol. 82, no. 1, pp. 125–158.MathSciNetzbMATHGoogle Scholar
  12. 12.
    Demidenko, V.M., Finke, G., and Gordon, V.S., Well Solvable Cases of the Quadratic Assignment Problem with Monotone and Bimonotone Matrices, J. Math. Modell. Algorithms, 2006, vol. 5, no. 2, pp. 167–187.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Burkard, R., Dell’Amico, M., and Martello, S., Assignment Problems, Philadelphia: SIAM, 2012, vol. 125.zbMATHGoogle Scholar
  14. 14.
    Tate, D.M. and Smith, A.E., A Genetic Approach to the Quadratic Assignment Problem, Comput. Oper. Res., 1995, vol. 22, no. 1, pp. 73–83.zbMATHGoogle Scholar
  15. 15.
    Maniezzo, V. and Colorni, A., The Ant System Applied to the Quadratic Assignment Problem, IEEE Transact. Knowledge Data Eng., 1999, vol. 11, no. 5, pp. 769–778.Google Scholar
  16. 16.
    Taillard, E., Robust Taboo Search for the Quadratic Assignment Problem, Parallel Comput., 1991, vol. 17, no. 4, pp. 443–455.MathSciNetGoogle Scholar
  17. 17.
    Jünger, M. and Kaibel, V., A Basic Study of the QAP Polytope, Techincal Report 96.215, Institut für Informatik, Universität zu Köln, Germany, 1996.Google Scholar
  18. 18.
    Çela, E., Schmuck, N.S., Wimer, S., and Woeginger, G.J., The Wiener Maximum Quadratic Assignment Problem [Online], arXiv.org, 2011, updated at 20.04.2011. https://arxiv.org/abs/1102.3030v3 (accessed at: 15.02.2017)zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. V. Uzhegov
    • 1
    Email author
  • A. A. Anan’ev
    • 1
  • P. V. Lomovitskii
    • 1
  • A. N. Khlyupin
    • 1
  1. 1.MIPhT Engineering Center for Hard to Recover MineralsMoscow Institute of Physics and Technology (State University)MoscowRussia

Personalised recommendations