Automation and Remote Control

, Volume 80, Issue 1, pp 66–80 | Cite as

On Solving the Optimal Control Problem

  • I. S. PolyanskiiEmail author
  • N. S. Arkhipov
  • S. Yu. Misyurin
Control in Technical Systems


We consider a solution of the optimal control problem for an adaptive multidirectional mirror antenna. With the Pontryagin maximum principle, we reduce the problem to solving a system of ordinary differential equations. The resulting system can be solved numerically using modern approaches such as the Runge–Kutta methods or hybrid evolutionary algorithms. Estimation of the state vector is performed by the maximum likelihood criterion with solving the generated Fokker–Planck–Kolmogorov stochastic differential equation. In this case, the posterior probability density function is associated with the normalized value of the energy flux density in the aperture of antenna feeders. We determine the ability to suppress interference with an adaptive multidirectional mirror antenna and give an example of solving the control problem.


adaptive multidirectional mirror antenna interference suppression Fokker–Planck–Kolmogorov equation Pontryagin maximum principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sosulin, Yu.G. and Kostrov, V.V., Estimation–Correlation–Compensational Signal Processing in the Presence of Noise, Radiotekh., 2006, no. 9(51), pp. 1027–1065.Google Scholar
  2. 2.
    Sosulin, Yu.G., Kostrov, V.V., and Parshin, Yu.N., Otsenochno-korrelyatsionnaya obrabotka signalov i kompensatsiya pomekh (Estimation–Correlational Signal Processing and Noise Compesnsation), Moscow: Radiotekhnika, 2014.Google Scholar
  3. 3.
    Shchesnyak, S.S. and Popov, M.P., Adaptivnye antenny (Adaptive Antennas), St. Petersburg: VKIKA im. A.F. Mozhaiskogo, 1995.Google Scholar
  4. 4.
    Weiner, M.M., Adaptive Antennas and Receivers, Boca Raton–London: CRC Taylor & Francis, 2006.Google Scholar
  5. 5.
    Poon, A., Brodersen, R.W., and Tse, D., Degrees of Freedom in Multiple-Antenna Channels: A Signal Space Approach, IEEE Transact. Inform. Theory, 2005, vol. 51(2), pp. 523–536.Google Scholar
  6. 6.
    Pistol’kors, A.A. and Litvinov, O.S., Vvedenie v teoriyu adaptivnykh antenn (Introduction to the Theory of Adaptive Antennas), Moscow: Nauka, 1991.Google Scholar
  7. 7.
    Madec, P.-Y., Overview of Deformable Mirror Technologies for Adaptive Optics and Astronomy, in Adaptive Optics Systems III, Ellerbroek, B.L., Marchetti, E., and Véran, J.-P., Eds., Amsterdam: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2012, vol. 8447, p. 5.Google Scholar
  8. 8.
    Arkhipov, N.S., Velikikh, A.S., Karpov, A.V., and Polyanskii, I.S., An Algorithm for Generating the Cluster Groups of Hybrid Mirror Antenna Radiators, Telecommun. Radio Eng., 2013, no. 72(2), pp. 147–160.CrossRefGoogle Scholar
  9. 9.
    Somov, A.M., Polyanskii, I.S., and Stepanov, D.E., Synthesis of Reflective Surfaces of a Mirror-Type Antenna System with the Baricentric Approach under Reflector Parameterization, Antenny, 2015, no. 8, pp. 11–19.Google Scholar
  10. 10.
    Arkhipov, N.S., Zakharov, I.S., and Chaplygin, I.A., Representing Hybrid Mirror Antennas as Spatial and Angular Filters, Telekommun., 2000, no. 3, pp. 29–37.Google Scholar
  11. 11.
    Arkhipov, N.S., Polyanskii, I.S., and Somov, A.M., Analiz i strukturno-parametricheskii sintez zerkal’nykh antenn (Analysis and Structural–Parametric Synthesis of Mirror Antennas), Somov, A.M., Ed., Moscow: Goryachaya Liniya—Telekom, 2017.Google Scholar
  12. 12.
    Somov, A.M., Arkhipov, N.S., Polyanskii, I.S., and Stepanov, D.E., Computing the Directional Pattern of Mirror Antennae with Approximate Methods of Physical Optics and Physical Diffraction Theory, Proc. NIIR, 2015, no. 2, pp. 43–53.Google Scholar
  13. 13.
    Polyanskii, I.S., The Vector Baricentric Method in Computational Electrodynamics, Proc. SPIIRAN, 2017, no. 2(51), pp. 206–222.CrossRefGoogle Scholar
  14. 14.
    Polyanskii, I.S. and Pekhov, Yu.S., The Baricentric Method for Solving Singular Integral Equations of the Electrodynamic Theory of Mirror Antennas, Proc. SPIIRAN, 2017, no. 5(54), pp. 244–262.CrossRefGoogle Scholar
  15. 15.
    Il’inskii, A.S. and Smirnov, Yu.G., Difraktsiya elektromagnitnykh voln na provodyashchikh tonkikh ekranakh (Diffraction of Electromagnetic Waves on Conductive Thin Screens), Moscow: IPRZhR, 1996.Google Scholar
  16. 16.
    Colton, D. and Kress, R., Integral Equation Methods in Scattering Theory, Philadelphia: SIAM, 2013.CrossRefzbMATHGoogle Scholar
  17. 17.
    Tikhonov, V.I. and Kharisov, V.N., Statisticheskii analiz i sintez radiotekhnicheskikh ustroistv i sistem (Statistical Analysis and Synthesis of Radiotechnical Devices and Systems), Moscow: Radio i Svyaz’, 2004.Google Scholar
  18. 18.
    Panteleev, A.V. and Rybakov, K.A., Metody i algoritmy sinteza optimal’nykh stokhasticheskikh sistem upravleniya pri nepolnoi informatsii (Methods and Algorithms for the Synthesis of Optimal Stochastic Control Systems under Incomplete Information), Moscow: Mosk. Aviats. Inst., 2012.Google Scholar
  19. 19.
    Polyanskii, I.S., The Baricentric Method for the Optimal Control Problem for the Form of the Reflective Surface of a Mirror Antenna, Mat. Model., 2017, vol. 29, no. 11, pp. 140–150.MathSciNetGoogle Scholar
  20. 20.
    Kuznetsov, D.F., Stokhasticheskie differentsial’nye uravneniya: teoriya i praktika chislennogo resheniya (Stochastic Differential Equations: Theory and Practice of Numerical Solution), St. Petersburg: Polytech. Univ., 2010, 4th ed.Google Scholar
  21. 21.
    Polyanskii, I.S., Baricentric Poisson–Riemann Coordinates, Proc. SPIIRAN, 2016, no. 6(49), pp. 32–48.CrossRefGoogle Scholar
  22. 22.
    Klebanov, L., Rachev, S.T., and Fabozzi, F., Robust and Non-Robust Models in Statistics, New York: Nova Science, 2009.Google Scholar
  23. 23.
    Boltyanskii, V.G., Matematicheskie metody optimal’nogo upravleniya (Mathematical Optimal Control Methods), Moscow: Nauka, 1968.Google Scholar
  24. 24.
    Blumin, S.L. and Pogodaev, A.K., Recursive Iterative Algorithms for Adaptive Identification of Nonlinear Concentrated Dynamic Systems, Autom. Remote Control, 2003, vol. 64, no. 10, pp. 1583–1588.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Polyanskii, I.S. and Patronov, D.Yu., Maximum Likelihood Estimate of a Variance–Covariance Matrix, Sovr. Probl. Nauki Obrazovan., 2013, no. 1. article/view?id=8516Google Scholar
  26. 26.
    Olemskoy, I.V., Eremin, A.S., and Kovrizhnykh, N.A., Embedded Methods of Order Six for Special Systems of Ordinary Differential Equations, Appl. Math. Sci., 2017, vol. 11, no. 1, pp. 31–38.Google Scholar
  27. 27.
    Kreinin, G.N. and Misyurin, S.Yu., Choice of the Law for a Position Control System, J. Machin. Manufact. Reliabilit., 2012, vol. 41, no. 4, pp. 331–336.CrossRefGoogle Scholar
  28. 28.
    Polyanskii, I.S., Stepnov, D.E., and Frolov, M.M., A Hybrid Genetic Method with Gradient Learning and Forecasting for Solving Global Optimization Problems for Multi-Extremal Functions, Vestn. BGTU, 2014, no. 3(43), pp. 138–146.Google Scholar
  29. 29.
    Kreinin, G.V. and Misyurin, S.Yu., A Systematic Approach to Synthesis of a Drive System, J. Machin. Manuf. Reliab., 2011, vol. 40, no. 6, pp. 507–511.CrossRefGoogle Scholar
  30. 30.
    Arkhipov, N.S., Polyanskii, I.S., and Sakhonchik, V.D., An Algorithm for Constructing the Radiation Response for a Multi-Ray Hybrid Mirror Antenna, Tr. NIIR, 2012, pp. 68–78.Google Scholar
  31. 31.
    Shifrin, Ya.S., Voprosy statisticheskoi teorii antenn (Problems of Statistical Theory of Antennas), Moscow: Sovetskoe Radio, 1970.Google Scholar
  32. 32.
    Dzhigan, V.I., Adaptivnaya fil’tratsiya signalov: teoriya i algoritmy (Adaptive Signal Filtering: Theory and Algorithms), Moscow: Tekhnosfera, 2013.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. S. Polyanskii
    • 1
    Email author
  • N. S. Arkhipov
    • 2
  • S. Yu. Misyurin
    • 3
  1. 1.Academy of the Federal Security Service of RussiaOrelRussia
  2. 2.CJSC “Eureka,”St. PetersburgRussia
  3. 3.National Research Nuclear University “MEPhI,”MoscowRussia

Personalised recommendations