Advertisement

Automation and Remote Control

, Volume 79, Issue 9, pp 1713–1721 | Cite as

Feedback Design for Linear Control Systems with Input and Output Disturbances: A Robust Formulation

  • K. O. Zheleznov
  • M. V. Khlebnikov
Control Sciences
  • 7 Downloads

Abstract

We formulate the control design problem for systems with structured uncertainty. The source of disturbances that affect both the input and the output of the system is represented by the same vector-valued signal. The method proposed for the solution of this problem is based on the concept of invariant ellipsoids. The efficiency of the approach is exemplified via application to a model of a fighter aircraft.

Keywords

linear control systems linear matrix inequalities invariant ellipsoids bounding ellipsoids robustness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsykunov, A.M., Robastnoe upravlenie s kompensatsiei vozmushchenii (Robust Control with Compensation of Disturbances), Moscow: Fizmatlit, 2012.Google Scholar
  2. 2.
    Sokolov, V.F., Robastnoe upravlenie pri ogranichennykh vozmushcheniyakh (Robust Control under Bounded Disturbances), Syktyvkar: Komi Nauchn. Tsentr Ural. Otd. Ross. Akad. Nauk, 2011.Google Scholar
  3. 3.
    Petersen, I.R. and Tempo, R., Robust Control of Uncertain Systems: Classical Results and Recent Developments, Automatica, 2014, vol. 50, no. 5, pp. 1315–1335.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hien, L.V. and Trinh, H.M., A New Approach to State Bounding for Linear Time-Varying Systems with Delay and Bounded Disturbances, Automatica, 2014, vol. 50, no. 6, pp. 1735–1738.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Eremin, E.L., Okhotnikov, S.S., and Telichenko, D.A., Robust Time Delayed Control System with Time Invariant Observer and High Speed Master for Nonlinear Plant, Vestn. TOGU, 2010, vol. 17, no. 2, pp. 51–58.Google Scholar
  6. 6.
    Zheleznov, K.O. and Khlebnikov, M.V., Tracking Problem for Dynamical Systems with Exogenous and System Disturbances, 20th Int. Conf. on System Theory, Control and Computing, Sinaia, Romania, October 13–15, 2016, pp. 125–128.Google Scholar
  7. 7.
    Tsykunov, A.M., Robust Tracking System with Compensation of Perturbations and Noises, Vestn. Astrakhan. Gos. Tekh. Univ., Upravlen., Vychisl. Tekhn. Informat., 2014, no. 1, pp. 54–61.Google Scholar
  8. 8.
    Nazin, S.A., Polyak, B.T., and Topunov, M.V., Rejection of Bounded Exogenous Disturbances by the Method of Invariant Ellipsoids, Autom. Remote Control, 2007, vol. 68, no. 3, pp. 467–486.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Polyak, B.T., Khlebnikov, M.V, and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems Subject to Exogenous Disturbances: The Linear Matrix Inequalitiy Technique), Moscow: LENAND, 2014.Google Scholar
  10. 10.
    Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.Google Scholar
  11. 11.
    Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.CrossRefzbMATHGoogle Scholar
  12. 12.
    Skogestad, S. and Postlethwaite, I., Multivariable Feedback Control: Analysis and Design, New York: Wiley, 2007.zbMATHGoogle Scholar
  13. 13.
    Balandin, D.V. and Kogan, M.M., Synthesis of a Suboptimal Controller by Output for Dampening Limited Disturbances, Autom. Remote Control, 2011, vol. 72, no. 4, pp. 677–683.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Toh, K.-C., Todd, M., and Tütüncü, R., SDPT3—A MATLAB Software Package for Semidefinite Programming, Version 1.3, Optimiz. Methods Software, 1999, vol. 11, no. 1–4, pp. 545–581.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tütüncü, R., Toh, K.-C., and Todd, M., Solving Semidefinite-Quadratic-Linear Programs Using SDPT3, Math. Program., 2003, vol. 95, no. 2, pp. 189–217.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Löfberg, J., YALMIP: A Toolbox for Modeling and Optimization in MATLAB, IEEE Int. Symp. on Computer Aided Control Systems Design, 2004, pp. 284–289.Google Scholar
  17. 17.
    Liao, F., Wang, J.L., and Yang, G.-H., Reliable Robust Flight Tracking Control: An LMI Approach, IEEE Trans. Control Syst. Techn., 2002, vol. 10, no. 1, pp. 76–89.CrossRefGoogle Scholar
  18. 18.
    Petersen, I., A Stabilization Algorithm for a Class of Uncertain Systems, Syst. Control Lett., 1987, vol. 8, pp. 351–357.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Russian Energy AgencyMoscowRussia
  2. 2.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations