Advertisement

Automation and Remote Control

, Volume 79, Issue 9, pp 1545–1557 | Cite as

Multidimensional Output Stabilization of a Certain Class of Uncertain Systems

  • A. Kh. Gelig
  • I. E. Zuber
Nonlinear Systems

Abstract

Consideration was given to the indeterminate nth order system with l observed coordinates and l controls l < n. With the use of a backstepping-based construction of the observer and quadratic Lyapunov function, designed were continuous or pulse controls under which the system becomes globally asymptotically stable.

Keywords

uncertain systems nonlinear systems pulse systems robust control output stabilization quadratic Lyapunov functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cai, X., Lu, G., and Zhang, W., Stabilization for a Class of Uncertain Systems Based on Interval Observers, IET Control Theory A, 2012, vol. 6, no. 13, pp. 2057–2062.CrossRefGoogle Scholar
  2. 2.
    Chen Wu-Hue, Yong Wu, and Lie Xiaomei, Impulsive Observer-based Stabilization of Uncertain Linear Systems, IET Control Theory A, 2014, vol. 8, no. 3, pp. 149–159.CrossRefGoogle Scholar
  3. 3.
    Krstić, M., Kanellakopoulos, I., and Kokotović, P.V., Adaptive Nonlinear Control without Overparametrization, Syst. Control Lett., 1992, vol. 19, pp. 177–185.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Marconi, L., Praly, L., and Isidori, A., Output Stabilization via Nonlinear Luenberger Observers, SIAM J. Control Optim., 2007, vol. 45, no. 6, pp. 2277–2298.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Serrani, A., Isidori, A., and Marconi, L., Semi-global Nonlinear Output Regulation with Adaptive Internal Model, IEEE Trans. Automat. Control, 2001, vol. 46, no. 8, pp. 1178–1194.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Freidovich, L.B. and Khalil, H.K., Performance Recovery of Feedback-Linearization-Based Design, IEEE Trans. Automat. Control, 2008, vol. 53, no 10, pp. 2324–2334.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Furtat, I.B. and Tupichin, E.A., Modified Backstepping Algorithm for Nonlinear Systems, Autom. Remote Control, 2016, vol. 77, no. 9, pp. 1567–1578.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Yao, B. and Tomizuka, M., Adaptive Robust Sontrol of MIMO Nonlinear Systems in Semi-Struct Feedback Forms, Automatica, 2001, vol. 37, pp. 1305–1321.CrossRefzbMATHGoogle Scholar
  9. 9.
    Druzhinina, M.V., Nikiforov, V.O., and Fradkov, A.L., Adaptive Output Control Methods for Nonlinear Objects, Autom. Remote Control, 1996, vol. 57, no. 2, pp. 153–176.zbMATHGoogle Scholar
  10. 10.
    Liu, X., Gu, G., and Zhou, K., Robust Stabilization of MIMO Nonlinear Systems by Backstepping, Automatica, 1999, vol. 35, pp. 987–992.CrossRefzbMATHGoogle Scholar
  11. 11.
    Kulkarni, A. and Kumar, A., Adaptive Waveled Backstepping Control for a Class of MIMO Underactuated Systems, Automat. Control Eng., 2015, vol. 3, no. 4, pp. 284–289.CrossRefGoogle Scholar
  12. 12.
    Jia, R., Qian, C., and Zhai, J., Semi-Global Stabilization of Uncertain Non-linear Systems by Homogeneous Output Feedback Controllers, IET Control Theory A, 2012, vol. 6, no. 1, pp. 165–172.CrossRefGoogle Scholar
  13. 13.
    Zhai, J., Li, W., and Fei, S., Global Output Feedback Stabilization for a Class of Uncertain Non-linear Systems, IET Control Theory A, 2013, vol. 7, no. 2, pp. 305–313.CrossRefGoogle Scholar
  14. 14.
    Man, Y. and Liu, Y., Global Output-Feedback Stabilization for a Class of Uncertain Time-varying Nonlinear Systems, Syst. Control Lett., 2016, vol. 90, pp. 20–30.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with a Nonunique Equilibrium), Moscow: Nauka, 1978.zbMATHGoogle Scholar
  16. 16.
    Yakubovich, V.A., Leonov, G.A., and Gelig A.Kh., Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities, London: World Scientific, 2004.CrossRefzbMATHGoogle Scholar
  17. 17.
    Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1988. Translated into English under the title Theory of Matrices, New York: Chelsea, 1959.zbMATHGoogle Scholar
  18. 18.
    Gelig, A.Kh. and Churilov, A.N., Kolebaniya i ustoichivost’ nelineinykh impul’snykh sistem (Oscillations and Stability of Nonlinear Impulsive Systems), St. Petersburg: S.-Peterburg. Gos. Univ., 1993. Translated under the title Stability and Oscillations of Nonlinear Pulse-modulated Systems, Boston: Birkhäuser, 1998.Google Scholar
  19. 19.
    Gelig, A.Kh. and Zuber, I.E., Using the Direct and Indirect Control to Stabilize Some Classes of Uncertain Control Systems. II. Pulse and Discrete Systems, Autom. Remote Control, 2012, vol. 73, no. 9, pp. 1498–1510.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations