Advertisement

Automation and Remote Control

, Volume 79, Issue 7, pp 1287–1295 | Cite as

Parametric Analysis of the Sensitivity of a Functional on the Basis of the Non-Classical Model of Optimal Economic Growth

Control in Social Economic Systems
  • 1 Downloads

Abstract

We study the sensitivity of a functional on the basis of the macroeconomic model. This analysis is a calculation of the derivative with respect to the parameters of the functional characterizing the optimal trajectory. To solve this problem, we apply an approach using conjugate functions and bring the results down to concrete computations. As the model we use a neoclassical model of optimal economic growth and estimate the sensitivity with the growth rate of civilian labor force of national economies in three European countries. Our results can be recommended for analysis and practical use by the relevant authorities. Since the ultimate goal of modeling is to consider feasible alternatives when making decisions, such analysis can be useful.

Keywords

sensitivity optimal control single-sector model economic growth production function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tomović, R. and Vukobratović, M., General Sensitivity Theory, New York: Elsevier, 1972. Translated under the title Obshchaya teoriya chuvstvitel’nosti, Moscow: Sovetskoe Radio, 1972.MATHGoogle Scholar
  2. 2.
    Rozenvasser, E.N. and Yusupov, R.M., Contributions of Leningrad Researchers to the Development of Sensitivity Theory for Control Systems, Tr. SPIIRAS, 2013, no. 2, pp. 13–41.CrossRefGoogle Scholar
  3. 3.
    Ustinov, E.A., Sensitivity Analysis in Remote Sensing, New York: Springer, 2015.CrossRefGoogle Scholar
  4. 4.
    Cacuci, D.G., Sensitivity and Uncertainty Analysis, vol. 1, Theory, Boca Raton: Chapman and Hall, 2003.CrossRefMATHGoogle Scholar
  5. 5.
    Intriligator, M.D., Mathematical Optimization and Economic Theory, Philadelphia: Society for Industrial and Applied Mathematics, 2002. Translated under the title Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, Moscow: Airis Press, 2002.CrossRefMATHGoogle Scholar
  6. 6.
    Hartman, P., Ordinary Differential Equations, New York: Wiley, 1964. Translated under the title Obyknovennye differentsial’nye uravneniya, Moscow: Mir, 1970.MATHGoogle Scholar
  7. 7.
    Haug, E.J., Choi, K.K., and Komkov, V., Design Sensitivity Analysis of Structural Systems, Orlando: Academic, 1986. Translated under the title Analiz chuvstvitel’nosti pri proektirovanii konstruktsii, Moscow: Mir, 1988.MATHGoogle Scholar
  8. 8.
    Haug, E.J., Mani, N.K., and Krishnaswami, P., Design Sensitivity Analysis and Optimization of Dynamically Driven Systems, in Computer Aided Analysis and Optimization of Mechanical System Dynamics, Haug, E.J., Ed., Berlin: Springer, 1984, pp. 555–635.CrossRefGoogle Scholar
  9. 9.
    Barro, R. and Sala-i-Martin, X., Economic Growth, New York: McGraw-Hill, 1995. Translated under the title Ekonomicheskii rost, Moscow: BINOM, Laboratoriya Znanii, 2010.MATHGoogle Scholar
  10. 10.
    Fedorenko, R.P., Priblizhennoe reshenie zadach optimal’nogo upravleniya (Approximate Solution of Optimal Control Problems), Moscow: Nauka, 1978.MATHGoogle Scholar
  11. 11.
    Kleiner, G.B., Proizvodstvennye funktsii: teoriya, metody, primenenie (Production Functions: Theory, Methods, Applications), Moscow: Finansy i Statistika, 1986.MATHGoogle Scholar
  12. 12.
    Organisation for Economic Co-operation and Development, Available at: http://stats.oecd.org/(accessed 04.02.2017).

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Rostov State University of Economics (RSUE)Rostov-on-DonRussia

Personalised recommendations