Advertisement

Applied Biochemistry and Microbiology

, Volume 55, Issue 4, pp 375–379 | Cite as

Sequestration of CO2 into CaCO3 using Carbonic Anhydrase Immobilization on Functionalized Aluminum Oxide

  • H. K. Lim
  • D. R. Kim
  • I. T. HwangEmail author
Article
  • 21 Downloads

Abstract

To develop the technology for CO2 sequestration, the free and immobilized carbonic anhydrase treatment was performed. The amount of dissolved CO2 was increased by 3-fold after enzyme treatment of 5 ppm, and the amount of calcium carbonate increased linearly as the CaCl2 was increased to 100 mM. To immobilize the carbonic anhydrase, an aluminum oxide carrier surface was functionalized with octadecyltrichlorosilane, 1H,1H,2H,2H-perfluoroctyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyl triethoxysilane, chlorotrimethylsilane 3-cyanopropyltrichlorosilane or 3-glycidyloxypropyltriethoxysilane. The best effect among these substances was revealed with 3-aminopropyltriethoxysilane; the efficacy of the immobilized carbonic anhydrase was at over 99%, and even when it was repeatedly used up to 40 times, the efficacy of the immobilized enzyme was more than 80%. The optimal conditions for the immobilized enzyme were 60oC and pH 7.0.

Keywords:

carbonic anhydrase aluminum oxide 3-aminopropyltriethoxysilane reuse immobilization 

Notes

FUNDING

This study was supported by a grant (NRF-2017M1A2A2049104) funded by the National Research Foundation, Ministry of Science and ICT and by a grant (SI-1701-01) funded by the Research Institute of Chemical Technology Republic of Korea.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Beller, M. and Bornscheuer, U.T., Angew. Chem. Int. Ed., 2014, vol. 53, no. 18, pp. 4527–4528.CrossRefGoogle Scholar
  2. 2.
    Shi, J., Jiang, Y., Jiang, Z., Wang, X., Wang, X., Zhang, S., et al., Chem. Soc. Rev., 2015, vol. 44, no. 17, pp. 5981–5982.CrossRefGoogle Scholar
  3. 3.
    Alissandratos, A. and Easton, C.J., Beilstein J. Org. Chem., 2015, vol. 11, pp. 2370–2387.CrossRefGoogle Scholar
  4. 4.
    Cheah, W.Y., Ling, T.C., Juan, J.C., Lee, D.J., Chang, J.S., and Show, P.L., Bioresour. Technol., 2016, vol. 215, pp. 346–356.CrossRefGoogle Scholar
  5. 5.
    Matter, J.M., Stute, M., Snæbjörnsdottir, S.O., Oelkers, E.H., Gislason, S.R., Aradottir, E.S., et al., Science, 2016, vol. 352, no. 6291, pp. 1312–1314.CrossRefGoogle Scholar
  6. 6.
    Psarras, P.C., Comello, S., Bains, P., Charoensawadpong, P., Reichelstein, S., and Wilcox, J. Environ. Sci. Technol., 2017, vol. 51, no. 19, pp. 11440–11449.CrossRefGoogle Scholar
  7. 7.
    Vinoba, M., Bhagiyalakshm, M., Grace, A.N., Chu, D.H., Nam, S.C., Yoon, Y., et al., Langmuir, 2013, vol. 29, no. 50, pp. 15655– 15663.CrossRefGoogle Scholar
  8. 8.
    Power, I.M., Harrison, A.L., and Dipple, G.M., Environ. Sci. Technol., 2016, vol. 50, no. 5, pp. 2610–2618.CrossRefGoogle Scholar
  9. 9.
    Bond, G.M., Stringer, J., Brandvold, D.K., Simsek, F.A., Medina, M.-G., and Egeland, G., Energy Fuels, 2001, vol. 15, no. 2, pp. 309–316.CrossRefGoogle Scholar
  10. 10.
    Li, W., Chen, W.-S., Zhou, P.-P., and Yu, L.-J., Chem. Engineer. J., 2013, vol. 232, pp. 149–156.CrossRefGoogle Scholar
  11. 11.
    Bose, H. and Satyanarayana, T., Front. Microbiol., 2017, vol. 8, pp. 1615– 1635.CrossRefGoogle Scholar
  12. 12.
    Yadava, R.R., Krishnamurthi, K., Mudliar, S.N., Devi, S.S., Naoghare, P.K., Bafana, A., and Chakrabarti, T., J. Basic Microbiol., 2014, vol. 54, no. 6, pp. 472–481.CrossRefGoogle Scholar
  13. 13.
    Sharma, A. and Bhattacharya, A., J. Mol. Catal. B—Enzym., 2010, vol. 67, nos. 1–2, pp. 122–128.CrossRefGoogle Scholar
  14. 14.
    Sharma, A., Bhattacharya, A., and Shrivastava, A., Enzyme Microb. Technol., 2011, vol. 48, nos. 4–5, pp. 416–426.CrossRefGoogle Scholar
  15. 15.
    Migliardini, F., De Luca, V., Carginale, V., Rossi, M., Corbo, P., Supuran, C.T., and Capasso, C., J. Enzyme Inhib. Med. Chem., 2014, vol. 29, no. 1, pp. 146–150.CrossRefGoogle Scholar
  16. 16.
    Zhang, Y.-T., Zhi, T.-T., Zhang, L., Huang, H., and Chen, H.-L., Polymer, 2009, vol. 50, no. 24, pp. 5693–5700.CrossRefGoogle Scholar
  17. 17.
    Prabhu, C., Valechha, A., Wanjari, S., Labhsetwar, N., Kotwal, S., Satyanarayanan, T., and Rayalu, S., J. Mol. Catal. B—Enzym., 2011, vol. 71, nos. 1–2, pp. 71–78.CrossRefGoogle Scholar
  18. 18.
    Larachi, F., Lacroix, O., and Grandjean, B.P., Chem. Eng. Sci., 2012, vol. 73, pp. 99–115.CrossRefGoogle Scholar
  19. 19.
    Wanjari, S., Prabhu, C., Satyanarayana, T., Vinu, A., and Rayalu, S., Microp. Mesop. Mater., 2012, vol. 160, pp. 151–158.CrossRefGoogle Scholar
  20. 20.
    Bradford, M.M., Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.CrossRefGoogle Scholar
  21. 21.
    Zhang, S., Zhang, Z., Lu, Y., Rostam-Abadi, M., and Jones, A., Bioresour. Technol., 2011, vol. 102, no. 22, pp. 10194–10201.CrossRefGoogle Scholar
  22. 22.
    Nogia, P., Sidhu, G.K., Mehrotra, R., and Mehrotra, S., Int. J. Low-Carbon Technol., 2016, vol. 11, no. 2, pp. 266–274.CrossRefGoogle Scholar
  23. 23.
    Bond, G.M., Stringer, J., Brandvold, D.K., Simsek, F.A., Medina, M.-G., and Egeland, G., Energy Fuels, 2001, vol. 15, no. 2, pp. 309–316.CrossRefGoogle Scholar
  24. 24.
    Forsyth, C., Yip, T.W.S., and Patwardhan, S.V., Chem. Commun., 2013, vol. 49, no. 31, pp. 3191–3193.CrossRefGoogle Scholar
  25. 25.
    Ozdemir, E., Energy Fuels, 2009, vol. 23, no. 11, pp. 5725–5730.CrossRefGoogle Scholar
  26. 26.
    Vinoba, M., Bhagiyalakshmi, M., Jeong, S.K., Yoon, Y.I., and Nam, S.C., Chem. Eur. J., 2012, vol. 18, no. 38, pp. 12028–12034.CrossRefGoogle Scholar
  27. 27.
    Wanjari, S., Prabhua, C., Yadava, R., Satyanarayana, T., Labhsetwar, N., Rayalua, S., Process Biochem., 2011, vol. 46, no. 4, pp. 1010–1018.CrossRefGoogle Scholar
  28. 28.
    Yadava, R.R., Mudliar, S.N., Shekha, A.Y., Fulkea, A.B., Devi, S.S., Krishnamurthi, K., et al., Process Biochem., 2012, vol. 47, no. 4, pp. 585–590.CrossRefGoogle Scholar
  29. 29.
    Hanna, J., Iliuta, I., Larachi, F., and Iliuta, M.C., Int. J. Greenhouse Gas Control, 2013, vol. 15, pp. 78–85.CrossRefGoogle Scholar
  30. 30.
    Leung, D.Y.C., Caramanna, G., and Maroto-Valer, M.M., Renew. Sust. Energ. Rev., 2014, vol. 39, pp. 426–443.Google Scholar
  31. 31.
    Al-Dhrub, A.H.A., Sahin, S., Ozmen, I., Tunca, E., and Bulbul, M., Process Biochem., 2017, vol. 57, pp. 95–104.CrossRefGoogle Scholar
  32. 32.
    Kim, I.G., Jo, B.H., Kang, D.G., Kim, C.S., Choi, Y.S., and Cha J., Chemosphere, 2012, vol. 87, no. , pp. 1091–1096.CrossRefGoogle Scholar
  33. 33.
    Hwang, E.T., Gang, H., Chung, J., and Gu, M.B., Green Chem., 2012, vol. 14, no. 8, pp. 2216–2220.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Carbon Resources Institute/Green Carbon Catalysis Research Center, Korea Research Institute of Chemical TechnologyDaejonRepublic of Korea
  2. 2.Department of Advanced Materials and Chemical Engineering, University of Science and TechnologyDaejonRepublic of Korea

Personalised recommendations