Applied Biochemistry and Microbiology

, Volume 55, Issue 4, pp 420–426 | Cite as

Characterization and Construction of Acinetobacter calcoaceticus T32 Strain that Can Remove Ammonia Nitrogen and Mercury

  • C. Li
  • M. Zhao
  • T. Song
  • X. Zhao
  • Y. Shao
  • W. ZhangEmail author


Acinetobacter calcoaceticus has been reported to be a good candidate for removing various pollutants. In this study, A. calcoaceticus T32 could remove 100% \({\text{NH}}_{4}^{ + }\)-N and 98% of total inorganic nitrogen within 48 h, with production of traces of \({\text{NO}}_{2}^{ - }\) and \({\text{NO}}_{3}^{ - }\). The gene of subunit of ammonia monooxygenase (AMO), amoAAc, was cloned from A. calcoaceticus. Real-time reverse transcriptase PCR showed that mRNA level of amoAAc was 22-fold higher when \({\text{NH}}_{4}^{ + }\) was present, and retained to normal level in the presence of 50 mg/L allylthiourea, an inhibitor of AMO. mer operon containing merT, merP and merA genes involved in mercury resistance was fused into plasmid JR20 and introduced into A. calcoaceticus T32 through bacterial conjugation, constructing A. calcoaceticus T32/JRHg, which removed 93% HgCl2. LD50 of A. calcoaceticus T32 was 6.19 × 108 CFU using model with Japanese flounder, suggesting that A. calcoaceticus T32 might be environmentally friendly to treat nitrogen and mercury pollutants.


Acinetobacter calcoaceticus ammonia nitrogen mercury genetic construction 



This work was financially supported by the Science and technology development plan of Ningbo City (2015C50057), and the National Natural Science Foundation of China (41676141), and the K.C. Wong Magna Fund at Ningbo University.


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. The Japanese flounder used here were commercially cultured, and all the experiments were conducted in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The study protocol was approved by the Experimental Animal Ethics Committee of Ningbo University, China.


  1. 1.
    Kahl, J.S., Nelson, S.J., Fernandez, I., Haines, T., Norton, S., Wiersma, G.B., et al., Environ. Monit. Assess., 2007, vol. 126, nos. 1–3, pp. 9–25.CrossRefGoogle Scholar
  2. 2.
    Tabors, G., Nikodemus, O., Dobkeviča, L., Kļaviņa, L., Ajanoviča, A., Viligurs, K., et al., Environ. Exp. Bot., 2017, vol. 15, no. 2, pp. 143–150.Google Scholar
  3. 3.
    Boyd, C.E., Global Aquaculture Advocate, 2013, November/December, pp. 40–43.Google Scholar
  4. 4.
    Encyclopedia of Environmental Health, 2011, Nriagu, J.O., Ed., Burlington: Elsevier, 5016 p.Google Scholar
  5. 5.
    Mahbub, K.R., Krishnan, K., Naidu, R., Andrews, S., and Megharaj, M., Ecol. Indic., 2017, vol. 74, pp. 451–462.CrossRefGoogle Scholar
  6. 6.
    Cristaldi, A., Conti, G.O., Jho, E.H., Zuccarello, P., Grasso, A., Copat, C., et al., Environ. Technol. Innov., 2017, vol. 8, pp. 309–326.CrossRefGoogle Scholar
  7. 7.
    Pap, S., Knudsen, T.Š., Radonić, J., Maletić, S., Igić, S.M., and Sekulić, M.T., J. Clean Prod., 2017, vol. 162, pp. 958–972.CrossRefGoogle Scholar
  8. 8.
    Piccirillo, C., Moreira, I.S., Novais, R.M., Fernandes, A.J.S., Pullar, R.C., and Castro, P.M.L., J. Environ. Chem. Eng., 2017, vol. 5, no. 5, pp. 4884–4894.Google Scholar
  9. 9.
    Singh, S., Kang, S.H., Mulchandani, A., and Chen, W., Curr. Opin. Biotech., 2008, vol. 19, no. 5, pp. 437–444.CrossRefGoogle Scholar
  10. 10.
    Ojuederie O.B. and Babalola O.O., Int. J. Environ. Res. Public Health, 2017, vol. 14, no. 12, pp. 1504–1529.CrossRefGoogle Scholar
  11. 11.
    Talaiekhozani, A. and Rezania, S., J. Water Process. Engineer., 2017, vol. 19, pp. 312–321.CrossRefGoogle Scholar
  12. 12.
    Acinetobacter Molecular Biology. Gerischer U., Ed., Norfolk, UK: Caister Academic Press, 2009.Google Scholar
  13. 13.
    Kharrazi, S.M., Younesi, H., and Abedini-Torghabeh, J., Int. Biodeter. Biodegr., 2014, vol. 92, pp. 41–48.CrossRefGoogle Scholar
  14. 14.
    Zhang, W.W., Niu, Z.L., Yin, K., Liu, F., and Chen, L.X., Int. Biodeter. Biodegr., 2013, vol. 77, pp. 45–50.CrossRefGoogle Scholar
  15. 15.
    Pandey, G., Dorrian, S.J., Russell, R.J., Brearley, C., Kotsonis, S., and Oakeshott, J.G., Appl. Environ. Microbiol., 2010, vol. 76, no. 9, pp. 2940–2945.CrossRefGoogle Scholar
  16. 16.
    Zhang, W.W. and Sun, L., Appl. Environ. Microbiol., 2007, vol. 73, no. 9, pp. 2825–2831.CrossRefGoogle Scholar
  17. 17.
    Zhang, M., Sun, K., and Sun, L., Microbiology, 2008, vol. 154, no. 7, pp. 2060–2069.CrossRefGoogle Scholar
  18. 18.
    Livak, K.J. and Schmittgen, T.D., Methods, 2001, vol. 25, no. 4, pp. 402–408.CrossRefGoogle Scholar
  19. 19.
    APHA AWWA WEF. Standard Methods for the Examination of Water and Wastewater. 19 Edition, American Public Health Association, Washington, DC. 1995.Google Scholar
  20. 20.
    Wang, H., Hu, Y., Zhang, W., and Sun, L., Vaccine, 2009, vol. 27, no. 30, pp. 4047–4055.CrossRefGoogle Scholar
  21. 21.
    Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., et al., Bioinformatics, 2007, vol. 23, no. 21, pp. 2947–2948.CrossRefGoogle Scholar
  22. 22.
    Tamura, K., Dudley, J., Nei, M., and Kumar, S., Mol. Biol. Evol., 2007, vol. 24, no. 8, pp. 1596–1599.CrossRefGoogle Scholar
  23. 23.
    Sarioglu, O.F., Suluyayla, R., and Tekinay, T., Int. Biodeter. Biodegr., 2012, vol. 71, pp. 67–71.CrossRefGoogle Scholar
  24. 24.
    Gómez-Guzmán, A., Jiménez-Magaña, S., Guerra-Rentería, A.S., Gómez-Hermosillo, C., Parra-Rodríguez, F.J., Velázquez, S., et al., Water Sci. Technol., 2017, vol. 76, no. 1, pp. 49–56.CrossRefGoogle Scholar
  25. 25.
    Roh, H., Subramanya, N., Zhao, F., Yu, C.P., Sandt, J., and Chu, K.H., Chemosphere, 2009, vol. 77, no. 8, pp. 1084–1089.CrossRefGoogle Scholar
  26. 26.
    Zhang, W.W., Andong, Z., Zhang, M., Wang, Q., Wei, Y., and Chen, L., Ann. Microbiol., 2013, vol. 64, no. 3, pp. 1231–1238.CrossRefGoogle Scholar
  27. 27.
    Richardson, D.J., Wehrfritz, J.M., Keech, A., Crossman, L.C., Roldan, M.D., Sears, H.J., et al., Biochem. Soc. Trans., 1998, vol. 26, no. 3, pp. 401–408.CrossRefGoogle Scholar
  28. 28.
    Sun, K., Wang, H., Zhang, M., Xiao, Z., and Sun, L., Aquaculture, 2009, vol. 289, nos. 1–2, pp. 134–139.CrossRefGoogle Scholar
  29. 29.
    Zhang, W.W., Hu, Y.H., Wang, H.L., and Sun, L., Vet. Microbiol., 2009, 139, nos. 1–2, pp. 183–188.CrossRefGoogle Scholar
  30. 30.
    Bergmann, D.G. and Hooper, A.B., Biochem. Bioph. Res. Commun. 1994, vol. 204, no. 2, pp. 759–762.CrossRefGoogle Scholar
  31. 31.
    Gupta, A. and Khare, S.K., Bioresour. Technol., 2006, vol. 97, no. 15, pp. 1788–1793.CrossRefGoogle Scholar
  32. 32.
    Oyetibo, G.O., Chien, M.F., Ikeda-Ohtsubo, W., Suzuki, H., Obayori, O.S., Adebusoye, S.A., et al., Int. Biodeter. Biodegr., 2017, vol. 120, pp. 143–151.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • C. Li
    • 1
  • M. Zhao
    • 1
  • T. Song
    • 1
  • X. Zhao
    • 1
  • Y. Shao
    • 1
  • W. Zhang
    • 1
    Email author
  1. 1.School of Marine Sciences, Ningbo UniversityNingboPR China

Personalised recommendations