Applied Biochemistry and Microbiology

, Volume 55, Issue 4, pp 360–370 | Cite as

Cyclodextrin Glycosyltransferase-Catalyzed Synthesis of Pinoresinol-α-D-glucoside Having Antioxidant and Anti-Inflammatory Activities

  • N. Khummanee
  • P. Rudeekulthamrong
  • J. KaulpiboonEmail author


Enzymatic synthesis of pinoresinol-α-glucosides (PGs) was performed through the transglycosylation reaction catalyzed by the recombinant cyclodextrin glycosyltransferase (CGTase) from Bacillus circulans A11 using β-cyclodextrin as the glycosyl donor and pinoresinol as the acceptor molecule. Incubation of 0.5% (wt/vol) β-cyclodextrin with 1.5% (wt/vol) pinoresinol (P) and 80.0 U/mL of CGTase in 20 mM of Tris–HCl buffer (pH 9.0) at 50oC for 60 h was optimal for PGs synthesis. Under these conditions, two PG transfer products with molecular weights of 544 and 682 Da corresponding to pinoresinol monoglucoside (PG1-I and PG1-II) and pinoresinol diglucoside (PG2), respectively, were detected by TLC and MS. The structures of PG1 and PG2 were confirmed as pinoresinol-α-D-glucopyranoside and pinoresinol-α-D-diglucopyranoside, respectively, by 1H-NMR analysis. The free-radical scavenging and anti-inflammatory activities of PG1 and PG2 were reduced as compared with the original P using α,α-diphenyl-β-picrylhydrazyl radical scavenging reactions and the β-glucuronidase inhibition assay. The loss of antioxidant and anti-inflammatory activities might result from the addition of glucose in the position 4-OH of P that may have disturbed its electron rotation. In vivo, PGs are converted to Ps before they are absorbed and so loss of activity may be minimal. Interestingly, the α-glycosylated compounds which showed the change of physicochemical properties such as increase of solubility and sweetness could promote a positive effect on the bioavailability of original P.


Antibacterial activity anti-inflammatory activity cyclodextrin glycosyltransferase intermolecular transglycosylation pinoresinol-α-glucoside 



We also thank the Drug Discovery and Development Center, and Center of Scientific Equipment for Advanced Research, Thammasat University for special service rate 1 of HPLC.


The authors gratefully acknowledge financial s-upport from the Thammasat University Research Fund under the TU Research Scholar, Contract no. TP 2/26/2559 and the Phramongkutklao College of Medicine Research Fund (Thailand).


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Takaha, T. and Smith, S.M., Biotechnol. Genet. Eng. Rev., 1999, vol. 16, no. 1, pp. 257–280.CrossRefGoogle Scholar
  2. 2.
    Loftsson, T., Jarho, P., Másson, M., and Järvinen, T., Expert Opin. Drug Deliv., 2005, vol. 2, no. 2, pp. 335–351.CrossRefGoogle Scholar
  3. 3.
    Aramsangtienchai, P., Chavasiri, W., Ito, K., and Pongsawasdi, P., J. Mol. Catal. B: Enzym., 2011, vol. 73, no. 1–4, pp. 27–34.CrossRefGoogle Scholar
  4. 4.
    Torres, P., Poveda, A., Jimenez-Barbero, J., Parra, J.L., Comelles, F., Ballesteros, A.O., and Plou, F.J., Adv. Synth. Catal., 2011, vol. 353, no. 7, pp. 1077–1086.CrossRefGoogle Scholar
  5. 5.
    Charoensapyanan, R., Takahashi, Y., Murakami, S., Ito, K., Rudeekulthamrong, P., and Kaulpiboon, J. Appl. Biochem. Microbiol., 2017, vol. 53, no. 4, pp. 410–420.CrossRefGoogle Scholar
  6. 6.
    Buchholz, K. and Seibel, J., Carbohydr. Res., 2008, vol. 343, no. 12, pp. 1966–1979.CrossRefGoogle Scholar
  7. 7.
    Charles, J.S., Ravikumt, P.R., and Huan, F.C., J. Am. Chem. Soc., 2005, vol. 98, no. 17, pp. 5412–5413.Google Scholar
  8. 8.
    Zhang, Y., Shi, J., Liu, L., Gao, Z., Che, J., Shao, D., and Liu, Y., PLoS One, 2015, vol. 10, no. 9, pp. 1–25.Google Scholar
  9. 9.
    Shi, J., Liu, C., Liu, L., Yang, B., and Zhang, Y., Appl. Microbiol. Biotechnol., 2012, vol. 93, no. 4, pp. 1475–1483.CrossRefGoogle Scholar
  10. 10.
    Lai, Y., Ding, S., Qian, H., Zhang, J., Xue, Y., Luo, Z., Yao, G., and Zhang, Y., Molecules, 2013, vol. 18, no. 9, pp. 11377–11383.CrossRefGoogle Scholar
  11. 11.
    Wang, D.M., Pu, W.J., Wang, Y.H., Zhang, Y.J., and Wang S.S., Molecules, 2012, vol. 17, no. 4, pp. 4595–4603.CrossRefGoogle Scholar
  12. 12.
    Schroeder, F.C., del Campo, M.L., Grant, J.B., Weibel, D.B., Smedley, S.R., Bolton, K.L., et al., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 42, pp. 15497–15501.CrossRefGoogle Scholar
  13. 13.
    Xie, L.H., Akao, T., Hamasaki, K., Deyama, T., and Hattori, M., Chem. Pharm. Bull., 2003, vol. 51, no. 5, pp. 508–515.CrossRefGoogle Scholar
  14. 14.
    Feng, S., Ni, S., and Sun, W., J. Liq. Chromatogr. Rel. Technol., 2007, vol. 30, no. 1, pp. 135–145.CrossRefGoogle Scholar
  15. 15.
    Rimphanitchayakit, V., Tonozuka, T., and Sakano, Y., Carbohydr. Res., 2005, vol. 340, no. 14, pp. 2279–2289.CrossRefGoogle Scholar
  16. 16.
    Kaulpiboon, J., Prasong, W., Rimphanitchayakit, V., Murakami, S., Aoki, K., and Pongsawasdi, P., J. Basic Microbiol., 2010, vol. 50, no. 5, pp. 427–435.CrossRefGoogle Scholar
  17. 17.
    Kato, T. and Horikoshi, K., Biotechnol. Bioeng., 1984, vol. 26, no. 6, pp. 595–598.CrossRefGoogle Scholar
  18. 18.
    Weber, K. and Osborn, M., J. Biol. Chem., 1969, vol. 244, no. 16, pp. 4406–4412.Google Scholar
  19. 19.
    Fuwa, H., J. Biochem., 1954, vol. 41, no. 5, pp. 583–603.CrossRefGoogle Scholar
  20. 20.
    Miwa, I., Okudo, J., Maeda, K., and Okuda, G., Clin. Chim. Acta., 1972, vol. 37, pp. 538–540.CrossRefGoogle Scholar
  21. 21.
    Goel, A. and Nene, S.N., Starch, 1995, vol. 47, no. 10, pp. 399–400.CrossRefGoogle Scholar
  22. 22.
    Bradford, M.M., Anal. Biochem., 1976, vol. 72, no. 1–2, pp. 248–254.CrossRefGoogle Scholar
  23. 23.
    Funayama, M., Nishino, T., Hirota, A., Murao, S., Takenishi, S., and Nakano, H., Biosci. Biotechnol. Biochem., 1993, vol. 57, no. 10, pp. 1666–1669.CrossRefGoogle Scholar
  24. 24.
    Moon, Y.H., Kim, G., Lee, J.H., Jin, X.J., Kim, D.W., and Kim D., J. Mol. Catal. B: Enzym., 2006, vol. 40, no. 1–2, pp. 1–7.CrossRefGoogle Scholar
  25. 25.
    Nile, S.H., Mahajan, A.B., Khobragade, C.N., and Park, S.W., Int. J. Phytomed., 2012, vol. 4, no. 2, pp. 266–271.Google Scholar
  26. 26.
    Abe, N., Nemoto, A., Tsuchiya, Y., Hojo, H., and Hirota, A., Biosci. Biotechnol. Biochem., 2000, vol. 64, no. 2, pp. 306–313.CrossRefGoogle Scholar
  27. 27.
    Charoensapyanan, R., Ito, K., Rudeekulthamrong, P., and Kaulpiboon, J., Biotechnol. Bioprocess Eng., 2016, vol. 21, no. 3, pp. 389–401.CrossRefGoogle Scholar
  28. 28.
    Kikuchi, H., Nagura, T., Inoue, M., Kishida, T., Sakurai, H., Yokota, A., et al., J. Appl. Glycosci., 2004, vol. 51, no. 4, pp. 291–296.CrossRefGoogle Scholar
  29. 29.
    Roslund, M.U., Tähtinen, P., Niemitz, M., and Sjöholm, R., Carbohydr. Res., 2008, vol. 343, no. 1, pp. 101–112.CrossRefGoogle Scholar
  30. 30.
    Rudeekulthamrong, P. and Kaulpiboon, J., Carbohydr. Res., 2016, vol. 432, no. 1, pp. 55–61.CrossRefGoogle Scholar
  31. 31.
    Yang, S.C., Chen, J.Y., Shang, H.F., Cheng, T.Y., Tsou, S.C., and Chen, J.R., World J. Gastroenterol., 2005, vol. 11, no. 47, pp. 7413–7417.CrossRefGoogle Scholar
  32. 32.
    Chotipanang, K., Bhunthumnavin, W., and Prousoontorn, M.H., J. Incl. Phenom. Macrocycl. Chem., 2011, vol. 70, no. 3–4, pp. 359–368.CrossRefGoogle Scholar
  33. 33.
    Nakakuki, T., J. Appl. Glycosci., 2005, vol. 52, no. 3, pp. 267–271.CrossRefGoogle Scholar
  34. 34.
    Patel, S. and Goyal, A., World J. Microbiol. Biotechnol., 2011, vol. 27, no. 5, pp. 1119–1128.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • N. Khummanee
    • 1
  • P. Rudeekulthamrong
    • 2
  • J. Kaulpiboon
    • 3
    Email author
  1. 1.Protein Research Laboratory, Faculty of Medicine, Thammasat UniversityPathumthaniThailand
  2. 2.Department of Biochemistry, Phramongkutklao College of MedicineBangkokThailand
  3. 3.Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat UniversityPathumthaniThailand

Personalised recommendations