Applied Biochemistry and Microbiology

, Volume 55, Issue 4, pp 371–374 | Cite as

Sodium Alginate Based Mucoadhesive Hydrogels

  • M. Yu. GorshkovaEmail author
  • I. F. Volkova
  • L. V. Vanchugova
  • I. L. Valuev
  • L. I. Valuev


The potential use of sodium-alginate hydrogels as mucoadhesive drug delivery carriers for intranasal application is studied. It is demonstrated that the drug release rate is dependent on the drug solubility in water, the drug concentration in the carrier, and the degree of alginate crosslinking.


polymer hydrogel sodium alginate mucoadhesion drug delivery system amino acid 



The work was performed within the framework of the State Task of the A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Privalova, A.M., Gulyaeva, N.V., and Bukreeva, T.V., Neirokhimiya, 2012, vol. 29, no. 2, pp. 93–105.Google Scholar
  2. 2.
    Leary, A.C., Dowling, M., Cussen, K., and O’Brien, J., J. Diabetes Sci. Technol., 2008, vol. 2, no. 6, pp. 1054–1060.CrossRefGoogle Scholar
  3. 3.
    Kokov, L.S., Tsygankov, V.N., Petrushin, K.V., and Luchkin, V.M., in Materialy 2-i mezhdunaroidnoi konferentsii “Sovremennye tekhnologii i vozmozhnosti rekonstruktivno-vosstanovitel’noi i esteticheskoi khirurgii “ (Proc. 2nd Int. Conf. “Modern Technologies and Possibilities of Reconstructive and Aesthetic Surgery”), Moscow: Inst. Khirurgii im. A.V. Vishnevskogo, 2010, p. 84.Google Scholar
  4. 4.
    Odeniyi, M.A., Khan, N.H., and Peh, K.K., Acta Pol. Pharm., 2015, vol. 72, no. 3, pp. 559–567.Google Scholar
  5. 5.
    Smart, J.D., Adv. Drug Deliv. Rev., 2005, vol. 57, no. 11, pp. 1556–1568.CrossRefGoogle Scholar
  6. 6.
    Cui, F., Qian, F., and Yin, C., Int. J. Pharm., 2006, vol. 316, nos. 1–2, pp. 154–161.CrossRefGoogle Scholar
  7. 7.
    Serra, L., Domenech, J., and Peppas, N.A., Eur. J. Pharm. Biopharm., 2006, vol. 63, no. 1, pp. 11–18.CrossRefGoogle Scholar
  8. 8.
    Adamczak, M.I., Martinsen, O.G., Smistad, G., and Hiorth, M., Int. J. Pharm., 2017, vol. 527, nos. 1–2, pp. 72–78.CrossRefGoogle Scholar
  9. 9.
    Lee, Y. and Mooney, D.J., Prog. Polym. Sci., 2012, vol. 37, no. 1, pp. 106–126.CrossRefGoogle Scholar
  10. 10.
    Khoshkbarchi, M.K. and Vera, J.H., Ind. Eng. Chem. Res., 1997, vol. 36, no. 6, pp. 2445–2451.CrossRefGoogle Scholar
  11. 11.
    Shevchenko, K.V., Nagaev, I.Yu., Alfeeva, L.Yu., Andreeva, L.A., Kamenskii, A.A., Levitskaya, N.G., Shevchenko, V.P., Grivennikov, I.A., and Myasoedov, N.F., Russ. J. Bioorg. Chem., 2006, vol. 32, no. 1, pp. 57–62.CrossRefGoogle Scholar
  12. 12.
    Sverdlova, O.V., Elektronnye spektry v organicheskoi khimii (Electronic Spectra in Organic Chemistry), Leningrad: Khimiya, 1985.Google Scholar
  13. 13.
    Izumrudov, V.A., Volkova, I.F., and Gorshkova, M.Yu., Macromol. Chem. Phys., 2010, vol. 211, no. 4, pp. P. 453–460.Google Scholar
  14. 14.
    Peyratout, C., Donath, E., and Daehne, L., Photochem. Microbiol. A, 2001, vol. 142, no. 1, pp. 51–57.Google Scholar
  15. 15.
    Menard-Moyon, C., Venkatesh, V., Krishna, V., Bonachera, F., Verma, S., and Bianco, A., Chem. Eur. J., 2016, vol. 21, pp. 11681–11686.CrossRefGoogle Scholar
  16. 16.
    Arpicco, S., Battaglia, L., Brusa, P., Cavalli, R., Chirio, D., Dosio, F., Gallarate, V., Milla, P., Peira, E., Rocco, F., Sapino, S., Stella, B., Ugazio, E., and Ceruti, M., J. Drug Deliv. Sci. Tech. B, 2016, vol. 32, pp. 298–312.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • M. Yu. Gorshkova
    • 1
    Email author
  • I. F. Volkova
    • 1
  • L. V. Vanchugova
    • 1
  • I. L. Valuev
    • 1
  • L. I. Valuev
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations