Advertisement

Applied Biochemistry and Microbiology

, Volume 55, Issue 4, pp 386–396 | Cite as

Molecular Genetic and Functional Analysis of the Genome of Bacteria Bacillus velezensis BIM B-439D

  • A. V. BerezhnayaEmail author
  • O. V. Evdokimova
  • L. N. Valentovich
  • N. V. Sverchkova
  • M. A. Titok
  • E. I. Kolomiyets
Article
  • 7 Downloads

Abstract

Whole-genome sequencing of bacteria Bacillus velezensis BIM B-439D has revealed that its genome is represented by a single circular chromosome 3 978 954 bp in size and contains 3969 predicted genes. Chromosome has 10 conserved loci that determine the production of antimicrobial compounds of varying chemical nature, namely lipopeptides (surfactin, bacillomycin, fengycin), polyketides (bacillaene, difficidin/oxydifficidin, macrolactin), bacillibactin siderophore, dipeptide bacilysin, a protein/polyketide of uncertain composition, and amylocyclicin bacteriocin. Mutants with impaired surfactin synthesis have been obtained by direct mutagenesis; they were characterized by an increased production of bacillomycin and fengycin. The obtained mutants demonstrated high antimicrobial activity towards a number of bacterial and fungal pathogens (Penicillium expansum, Alternaria tenuis, Botrytis cinerea,Bipolaris sorokiniana), but they inhibited the growth of the Fusarium genus fungi to a lesser degree.

Keywords:

Bacillus velezensis genome antimicrobial compounds antagonism surfactin 

Notes

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Borriss, R., in Bacteria in Agrobiology: Plant Growth Responses, Maheshwari, D.K., Ed., Heidelberg: Springer, 2011, pp. 41–76.Google Scholar
  2. 2.
    Chen, X.H., Koumoutsi, A., Scholz, R., and Borriss, R., J. Mol. Microbiol. Biotechnol., 2009, vol. 16, nos. 1–2, pp. 14–24.  https://doi.org/10.1159/000142891 CrossRefGoogle Scholar
  3. 3.
    Bullock, W.O., Fernandez, J.M., and Short, J.M., BioTechniques, 1987, vol. 5, no. 3, pp. 376–379.Google Scholar
  4. 4.
    Palmer, B.R. and Marinus, M.G., Gene, 1994, vol. 143, no. 1, pp. 1–12.  https://doi.org/10.1016/0378-1119(94)90597-5 CrossRefGoogle Scholar
  5. 5.
    Vieira, J. and Messing, J., Gene, 1982, vol. 19, no. 3, pp. 259–268.CrossRefGoogle Scholar
  6. 6.
    Cbambers, S.P., Prior, S.E., Barstow, D.A., and Minton, N.P., Gene, 1988, vol. 68, no. 1, pp. 139–149.CrossRefGoogle Scholar
  7. 7.
    Miller, J., Experiments in Molecular Genetics, New York: Cold Spring Harbor, 1972.Google Scholar
  8. 8.
    Dudka I. A., Vasser S. P., Ellanskaya I. A., Koval’ E. 3., Gorbik L. T., Nikol’skaya, E.A., et al., Metody eksperimental’noi mikologii: spravochnik (Experimental Mycology Methods: A Handbook), Bilai, V.I., Ed., Kiev: Naukova Dumka, 1982.Google Scholar
  9. 9.
    Maniatis, T., Fritsch, E. F., and Sambrook, J. Molecular Cloning, Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press, 1982.Google Scholar
  10. 10.
    Chen, X.H., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., and Borriss, R., J. Bacteriol., 2004, vol. 186, no. 4, pp. P. 1084–1096.Google Scholar
  11. 11.
    Richter, M., Rosselló-Móra, R., Oliver Glöckner, F., and Peplies, J., Bioinformatics, 2016, vol. 32, no. 6, pp. 929–931.CrossRefGoogle Scholar
  12. 12.
    Yokota, K., Yatsuda, M., Miwa, E., and Higuchi, K.J., J. ISSAA, 2012, vol. 18, no. 1, pp. 70–75.Google Scholar
  13. 13.
    Yang, H., Li, X., Li, X., Yu, H., and Shen, Z., Anal. Bioanal. Chem., 2015, vol. 407, no. 9, pp. 2529–2542.  https://doi.org/10.1007/s00216-015-8486-8 CrossRefGoogle Scholar
  14. 14.
    Segi, I., Metody pochvennoi mikrobiologii (Methods of Soil Microbiology), Moscow: Kolos, 1983.Google Scholar
  15. 15.
    Darling, A.E., Mau, B., and Perna, N.T., PLoS One, 2010, vol. 5, no. 6.  https://doi.org/10.1371/journal.pone.0011147
  16. 16.
    Fan, B., Blom, J., Klenk, Hans-P., and Borriss, R., Front. Microbiol., 2017, vol. 8, no. 22, pp. 1–15.Google Scholar
  17. 17.
    Niazi, A., Manzoor, Sh., Asari, S., Bejai, S., Meijer, J., and Bongcam-Rudloff, E., PLoS One, 2014, vol. 9, no. 8. e104651.  https://doi.org/10.1371/journal.pone.0104651 CrossRefGoogle Scholar
  18. 18.
    Rückert, Ch., Blom, J., Chen, X.H., Revac, O., and Borriss, R.J., Biotechnology, 2011, no. 155, pp. 78– 85.Google Scholar
  19. 19.
    Chen, X.H., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., et al., Nat. Biotechnol., 2007, vol. 25, pp. 1007–1014.  https://doi.org/10.1038/nbt1325 CrossRefGoogle Scholar
  20. 20.
    Borriss, R., Chen, X.H., Ruckert, Ch., Blom, J., Becker, A., Baumgarth, B., Fan, B., Pukall, R., Schumann, P., Spröer, C., Junge, H., Vater, J., Pühler, A., and Klenk, Hans-P., Int. J. Syst. Evol. Microbiol., 2011, pp. 1786–1801.Google Scholar
  21. 21.
    Dunlap, C.A., Kim, S.-J., Kwon, S.-W., and Rooney, A.P., Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 1212–1217.CrossRefGoogle Scholar
  22. 22.
    Klappenbach, J.A., Dunbar, J.M., and Schmidt, T.M., Appl. Environ. Microbiol., 2000, vol. 66, pp. 1328–1333.CrossRefGoogle Scholar
  23. 23.
    Luo, C., Liu, X., Zhou, H., Wang, Z., and Chen, X.H., Appl. Environ. Microbiol., 2015, vol. 81, no. 1, pp. 422–431.CrossRefGoogle Scholar
  24. 24.
    Reva, O.N. and Tummler, B., BMC Bioinf., 2005, vol. 6, no. 251, pp. 1–12.CrossRefGoogle Scholar
  25. 25.
    Scholz, R., Vater, J., Budiharjo, A., Wang, Z., He, Y., Dietel, K., Schwecke, T., Herfort, S., Lasch, P., and Borriss, R., J. Bacteriol., 2014, vol. 196, no. 10, pp. 1842–1852.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. V. Berezhnaya
    • 1
    Email author
  • O. V. Evdokimova
    • 1
  • L. N. Valentovich
    • 1
  • N. V. Sverchkova
    • 1
  • M. A. Titok
    • 1
  • E. I. Kolomiyets
    • 1
  1. 1.Institute of Microbiology, National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations