Advertisement

Applied Biochemistry and Microbiology

, Volume 55, Issue 4, pp 427–433 | Cite as

The Role of Nitrogen Oxide in Photomorphogenesis in Neurospora сrassa

  • S. Yu. FilippovichEmail author
  • M. V. Onufriev
  • G. P. Bachurina
  • M. S. Kritsky
Article
  • 6 Downloads

Abstract

The role of nitric oxide in the photomorphogenesis of several Neurospora сrassa strains (the wild-type strain wt-987, the nit-2 mutant, which lacks nitrite and nitrate reductase, and the nit-6 mutant, which lacks nitrite reductase) was evaluated from the content of nitrate and nitrite, the final products of NO decomposition, in the mycelium and cultivation medium. Analysis of the dynamics of nitrite release from the mycelium of the N. crassanit-6 strain in the course of photostimulated conidiogenesis indicated the possible participation of the NO-generating mechanism in the fungal photosignal transduction. Light-regulated conidiation in N. crassa was inhibited by the introduction of S-nitrosoglutathione, a nitrogen oxide donor, to the cultivation medium, and stimulated by the introduction of L-nitroarginine, an inhibitor of NO synthase, which is inderect indicative of the role of NO in the process. However, the absence of \({\text{NO}}_{2}^{ - }\) release during the photostimulated development of the protoperithecia (precursors of the female sexual structures) indicated a low probability of NO participation in sexual propagation of the fungus.

Keywords:

nitric oxide photomorphogenesis carotenoids conidia protoperithecia Neurospora crassa 

Notes

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Ricci, M., Krappmann, D., and Russo, V.E.A., Fungal Genet. Newslett., 1991, vol. 38, pp. 87–88.Google Scholar
  2. 2.
    Innocenti, F., Pohl, U., and Russo, V.E.A., Photochem. Photobiol., 1983, vol. 37, no. 1, pp. 49–51.CrossRefGoogle Scholar
  3. 3.
    Kritsky, M.S., Russo, V.E.A., Filippovich, S.Yu., Afanasieva, T.P., and Bachurina, G.P., Photochem. Photobiol., 2002, vol. 75, no. 1, pp. 79–83.CrossRefGoogle Scholar
  4. 4.
    Canovas, D., Marcos, J.F., Marcos, A.T., and Strauss, J., Curr. Genet., 2016, vol. 62, no. 3, pp. 513–518.CrossRefGoogle Scholar
  5. 5.
    Biotechnology of Fungal Genes, Gupta, V.K. and Ayyachamy, M., Eds., Boca Raton, USA: CRC Press, 2012, p. 400.Google Scholar
  6. 6.
    Domitrovic, T., Palhano, F.L., Barja-Fidalgo, C., DeFreitas, M., Orlando, M.T., and Fernandes, P.M., FEMS Yeast Res., 2003, vol. 3, no. 4, pp. 341–346.CrossRefGoogle Scholar
  7. 7.
    Wilken, M. and Huchzermeyer, B., Eur. J. Cell Biol., 1999, vol. 78, no. 3, pp. 209–213.CrossRefGoogle Scholar
  8. 8.
    Prats, E., Carver, T.L., and Mur, L.A., Res. Microbiol., 2008, vol. 159, no. 6, pp. 476–480.CrossRefGoogle Scholar
  9. 9.
    Kong, W., Huang, C., Chen, Q., Zou, Y., and Zhang, J., Fungal Genet. Biol., 2012, vol. 49, no. 1, pp. 15–20.CrossRefGoogle Scholar
  10. 10.
    Zheng, W., Miao, K., Zhang, Y., Pan, S., Zhang, M., and Jiang, H., Microbiology, 2009, vol. 155, no. 10, pp. 3440–3448.CrossRefGoogle Scholar
  11. 11.
    Kunert, J., Folia Microbiol., 1995, vol. 40, no. 3, pp. 238–244.CrossRefGoogle Scholar
  12. 12.
    Wang, J. and Higgins, V.J., Fungal Genet. Biol., 2005, vol. 42, no. 4, pp. 284–292.CrossRefGoogle Scholar
  13. 13.
    Lazar, E.E., Wills, R.B., Ho, B.T., Harris, A.M., and Spohr, L.J., Lett. Appl. Microbiol., 2008, vol. 46, no. 6, pp. 688–692.CrossRefGoogle Scholar
  14. 14.
    Turrion-Gomez, J.L., Eslava, A.P., and Benito, E.P., Fungal Genet. Biol., 2010, vol. 47, no. 5, pp. 484–496.CrossRefGoogle Scholar
  15. 15.
    Lai, T., Li, B., Qin, G., and Tian, S., Curr. Microbiol., 2011, vol. 62, no. 1, pp. 229–234.CrossRefGoogle Scholar
  16. 16.
    Maier, J., Hecker, R., Rockel, P., and Ninnemann, H., Plant Physiol., 2001, vol. 126, no. 3, pp. 1323–1330.CrossRefGoogle Scholar
  17. 17.
    Song, N.K., Jeong, C.S., and Choi, I.S., Mycologia, 2000, vol. 92, no. 6, pp. 1027–1032.CrossRefGoogle Scholar
  18. 18.
    Gong, X., Fu, Y., Jiang, D., Li, G., Yi, X., and Peng, Y., Fungal Genet. Biol., 2007, vol. 44, no. 12, pp. 1368–1379.CrossRefGoogle Scholar
  19. 19.
    Li, B., Fu, Y., Jiang, D., Xie, J., Cheng, J., Li, G., et al., Appl. Environ. Microbiol., 2010, vol. 76, no. 9, pp. 2830–2836.CrossRefGoogle Scholar
  20. 20.
    Chiuchetta, S.J.R. and Castro-Prado, M.A.A., Gen. Mol. Biol., 2005, vol. 28, no. 4, pp. 798–803.CrossRefGoogle Scholar
  21. 21.
    Ninnemann, H. and Maier, J., Photochem. Photobiol., 1996, vol. 64, no. 2, pp. 393–398.CrossRefGoogle Scholar
  22. 22.
    Miranda, K.M., Espay, M.G., and Wink, D.A., Nitric Oxide: Biol. Chem., 2001, vol. 5, no. 1, pp. 62–71.Google Scholar
  23. 23.
    Marzluf, G.A., Microbiol. Mol. Biol. Rev., 1997, vol. 61, no. 1, pp. 17–32.Google Scholar
  24. 24.
    Filippovich, S.Yu., Bachurina, G.P., and Shcherbakov, D.L., Appl. Biochem. Microbiol., 2015, vol. 51, no. 3, pp. 342–349.CrossRefGoogle Scholar
  25. 25.
    Filippovich, S.Yu., Bachurina, G.P., Gessler, N.N., Golovanov, A.B., Makarova, A.M., Groza, N.V., and Belozerskaya, T.A., Appl. Biochem. Microbiol., 2015, vol. 51, no. 6, pp. 655–659.CrossRefGoogle Scholar
  26. 26.
    Misko, T.P., Schilling, R.J., Salvemini, D., Moore, W.M., and Currie, M.G., Anal. Biochem., 1993, vol. 214, no. 1, pp. 11–16.CrossRefGoogle Scholar
  27. 27.
    Sommer, T., Degli-Innocenti, F., and Russo, V.E.A., Planta, 1987, vol. 170, no. 2, pp. 205–208.CrossRefGoogle Scholar
  28. 28.
    Ninnemann, H., J. Photochem. Photobiol., vol. 9, no. 2, pp. 189–199.Google Scholar
  29. 29.
    Sokolovsky, V.Y., Lauter, F.-R., Müller-Röber, B., Ricci, M., Schmidhauser, T.J., and Russo, V.E.A., J. Gen. Microbiol., 1992, vol. 138, no. 10, pp. 2045–2049.CrossRefGoogle Scholar
  30. 30.
    Filippovich, S.Yu., Bachurina, G.P., and Kritsky M.S., Appl. Biochem. Microbiol., 2007, vol. 43, no. 3, pp. 298–303.CrossRefGoogle Scholar
  31. 31.
    Pengkit, A., Jeon, S.S., Son, S.J., Shin, J.H., Baik, K.Y., Choi, E.H., and Park, G., Sci. Rep., 2016, vol. 6, article no. 30037.  https://doi.org/10.1038/srep30037 CrossRefGoogle Scholar
  32. 32.
    Vieira, A.L.G., Linares, E., Augusto, O., and Gomes, S.L., Fungal Genet. Biol., 2009, vol. 46, no. 8, pp. 575–584.CrossRefGoogle Scholar
  33. 33.
    Samalova, M., Johnson, J., Illes, M., Kelly, S., Fricker, M., and Gurr, S., New Phytol., 2013, vol. 197, no. 1, pp. 207–222.CrossRefGoogle Scholar
  34. 34.
    Marcos, A.T., Ramos, M.S., Marcos, J.F., Carmona, L., Strauss, J., and Cánovas, D., Mol. Microbiol., 2016, vol. 99, no. 1, pp. 15–33.CrossRefGoogle Scholar
  35. 35.
    Zweier, J.L., Samouilov, A., and Kuppusamy, P., Biochim. Biophys. Acta, 1999, vol. 1411, nos. 2–3, pp. 250–262.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. Yu. Filippovich
    • 1
    Email author
  • M. V. Onufriev
    • 2
  • G. P. Bachurina
    • 1
  • M. S. Kritsky
    • 1
  1. 1.Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscowRussia

Personalised recommendations