Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 5, pp 484–490 | Cite as

Properties of Functional Films Based on Chitosan Derivative with Gallic Acid

  • A. P. Lun’kov
  • B. Ts. Shagdarova
  • Yu. V. Zhuikova
  • A. V. Il’ina
  • V. P. Varlamov
Article
  • 12 Downloads

Abstract

Conjugates of chitosan (molecular weight 28 and 830 kDa) with gallic acid were synthesized by a reaction initiated by a free radical. The conjugates contained 106 and 119 mg of polyphenol per g of polymer. Thin films were obtained from solutions of synthesized chitosan derivatives, and their physico-chemical characteristics (thickness of 0.058–0.076 mm and moisture content of 7.92–9.44%), as well as the antioxidant (inhibiting activity with respect to 2,2-diphenyl-1-picrylhydrazyl) and antimicrobial properties, were studied in relation to Staphylococcus epidermidis and Escherichia coli.

Keywords

chitosan chitosan conjugates gallic acid antioxidant properties antimicrobial properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cazón, P., Velazquez, G., Ramírez, J.A., and Vázquez, M., Food Hydrocoll., 2017, vol. 68, pp. 136–148.CrossRefGoogle Scholar
  2. 2.
    No, H.K., Meyers, S.P., Prinyawiwatkul, W., and Xu, Z., J. Food Sci., 2007, vol. 72, no. 5, pp. 88–100.CrossRefGoogle Scholar
  3. 3.
    Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., and de la Caba, K., Int. J. Biol. Macromol., 2017, vol. 105, pp. 1358–1368.CrossRefPubMedGoogle Scholar
  4. 4.
    Liu, J., Liu, S., Chen, Y., Zhang, L., Kan, J., and Jin, C., Food Hydrocoll., 2017, vol. 71, pp. 176–186.CrossRefGoogle Scholar
  5. 5.
    Volf, I., Ignat, I., Neamtu, M., and Popa, V.I., Chem. Pap., 2014, vol. 68, no. 1, pp. 121–129.CrossRefGoogle Scholar
  6. 6.
    Oliver, S., Vittorio, O., Cirillo, G., and Boyer, C., Polym. Chem., 2016, vol. 7, no. 8, pp. 1529–1544.CrossRefGoogle Scholar
  7. 7.
    Liu, J., Pu, H., Liu, S., Kan, J., and Jin, C., Carbohydr. Res., 2017, vol. 174, pp. 999–1017.CrossRefGoogle Scholar
  8. 8.
    Pasanphan, W. and Chirachanchai, S., Carbohydr. Res., 2008, vol. 72, no. 1, pp. 169–177.CrossRefGoogle Scholar
  9. 9.
    Hu, Q. and Luo, Y., Carbohydr. Res., 2016, vol. 151, pp. 624–639.CrossRefGoogle Scholar
  10. 10.
    Liu, J., Lu, J.F., Kan, J., and Jin, C.H., Int. J. Biol. Macromol., 2013, vol. 62, pp. 321–329.CrossRefPubMedGoogle Scholar
  11. 11.
    Shagdarova, B.T., Il’ina, A.V., and Varlamov, V.P., Appl. Biochem. Microbiol., 2016, vol. 52, no. 2, pp. 222–225.CrossRefGoogle Scholar
  12. 12.
    Wang, W., Bo, S., Li, S., and Qin, W., Int. J. Biol. Macromol., 1991, vol. 13, no. 5, pp. 281–285.CrossRefPubMedGoogle Scholar
  13. 13.
    Lopatin, S.A., Derbeneva, M.S., Kulikov, S.N., Varlamov, V.P., and Shpigun, O.A., J. Anal. Chem., 2009, vol. 64, no. 6, pp. 648–651.CrossRefGoogle Scholar
  14. 14.
    Curcio, M., Puoci, F., Iemma, F., Parisi, O.I., Cirillo, G., Spizzirri, U.G., and Picci, N., J. Agric. Food Chem., 2009, vol. 57, no. 13, pp. 5933–5938.CrossRefPubMedGoogle Scholar
  15. 15.
    Wu, C., Tian, J., Li, S., Wu, T., Hu, Y., Chen, S., Sugawara, T., and Ye, X., Carbohydr. Res., 2016, vol. 146, pp. 10–19.CrossRefGoogle Scholar
  16. 16.
    Cho, Y.S., Kim, S.K., Ahn, C.B., and Je, J.Y., Carbohydr. Res., 2011, vol. 83, no. 4, pp. 1617–1622.CrossRefGoogle Scholar
  17. 17.
    Liu, J., Meng, C., Liu, S., Kan, J., and Jin, C., Food Hydrocoll., 2017, vol. 63, pp. 457–466.CrossRefGoogle Scholar
  18. 18.
    Chudinova, Y.V., Shagdarova, B.T., Il’ina, A.V., and Varlamov, V.P., Appl. Biochem. Microbiol., 2016, vol. 52, no. 5, pp. 496–501.CrossRefGoogle Scholar
  19. 19.
    López-Mata, M., Ruiz-Cruz, S., Silva-Beltrán, N., Ornelas-Paz, J., Zamudio-Flores, P., and Burruel-Ibarra, S., Molecules, 2013, vol. 18, no. 11, pp. 13735–13753.CrossRefPubMedGoogle Scholar
  20. 20.
    Mohammadi, A., Hashemi, M., and Masoud Hosseini, S., LWT—Food Sci. Technol., 2016, vol. 71, pp. 347–355.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. P. Lun’kov
    • 1
  • B. Ts. Shagdarova
    • 1
  • Yu. V. Zhuikova
    • 1
  • A. V. Il’ina
    • 1
  • V. P. Varlamov
    • 1
  1. 1.Institute of Bioengineering, Fundamental Foundations of Biotechnology Federal Research CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations