Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 5, pp 449–458 | Cite as

Antioxidant, Antimicrobial, and Fungicidal Properties of Chitosan Based Films (Review)

  • A. P. Lunkov
  • A. V. Ilyina
  • V. P. Varlamov
Article
  • 11 Downloads

Abstract

Data on the effect of biologically active compounds introduced into chitosan-based films (polyphenols, natural extracts from plants and proteins and peptides) on their antimicrobial, antioxidant and fungicidal activity are summarized and analyzed. It was shown that composite films reveal higher antimicrobial activity than films containing only chitosan, and they also retain their mechanical and protective properties.

Keywords

chitosan chitosan films antibacterial activity fungicidal activity polyphenols antioxidant activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Otero-Pazos, P., Sendon, R., Blanco-Fernandez, B., Blanco-Dorado, S., Alvarez-Lorenzo, C., Concheiro, A., Angulo, I., Paseiro-Losada, P., and Rodríguez-Bernaldo de Quirós, A., J. Food Sci. Technol., 2016, vol. 53, no. 6, pp. 2817–2826.CrossRefPubMedGoogle Scholar
  2. 2.
    Garavand, F., Rouhi, M., Razavi, S.H., Cacciotti, I., and Mohammadi, R., Int. J. Biol. Macromol., 2017, vol. 104, pp. 687–707.CrossRefPubMedGoogle Scholar
  3. 3.
    Aider, M., LWT—Food Sci. Technol., 2010, vol. 43, no. 6, pp. 837–842.Google Scholar
  4. 4.
    Souza, A.C., Benze, R., Ferrão, E.S., Ditchfield, C., Coelho, A.C.V., and Tadini, C.C., LWT—Food Sci. Technol., 2012, vol. 46, no. 1, pp. 110–117.CrossRefGoogle Scholar
  5. 5.
    Anitha, A., Sowmya, S., Kumar, P.T.S., Deepthi, S., Chennazhi, K.P., Ehrlich, H., Tsurkan, M., and Jayakumar, R., Prog. Polym. Sci., 2014, vol. 39, no. 9, pp. 1644–1667.CrossRefGoogle Scholar
  6. 6.
    Park, S.Bin., Lih, E., Park, K.S., Joung, Y.K., and Han, D.K., Prog. Polym. Sci., 2017, vol. 68, pp. 77–105.CrossRefGoogle Scholar
  7. 7.
    Vieira, M.G.A., Da Silva, M.A., Dos Santos, L.O., and Beppu, M.M., Eur. Polym. J., 2011, vol. 47, no. 3, pp. 254–263.CrossRefGoogle Scholar
  8. 8.
    Khitozan (Chitosan), Skryabin, K.G., Mikhailov, S.N., and Varlamov, V.P., Eds., Moscow: Tsentr Bioinzheneriya Ros. Akad. Nauk, 2013.Google Scholar
  9. 9.
    Ngo, D.-H., Vo, T.-S., Ngo, D.-N., Kang, K.-H., Je, J.-Y., Pham, H.N.-D., Byun, H.-G., and Kim, S.-K., Food Hydrocoll., 2015, vol. 51, pp. 200–216.CrossRefGoogle Scholar
  10. 10.
    Ahmed, S., Millia, J., Ahmad, M., Millia, J., Ikram, S., Millia, J., and Ahmad, M., J. Appl. Chem., 2014, vol. 3, no. 2, pp. 493–503.Google Scholar
  11. 11.
    Hamblin, M.R. and Hospital, M.G., Int. J. Adv. Res., 2016, vol. 4, no. 3, pp. 411–427.Google Scholar
  12. 12.
    Badawy, M.E.I., J. Appl. Polym. Sci., 2010, vol. 117, no. 2, pp. 960–969.CrossRefGoogle Scholar
  13. 13.
    Li, K., Xing, R., Liu, S., Li, R., Qin, Y., Meng, X., and Li, P., Carbohydr. Res., 2012, vol. 88, no. 3, pp. 896–903.CrossRefGoogle Scholar
  14. 14.
    Zou, P., Yang, X., Wang, J., Li, Y., Yu, H., Zhang, Y., and Liu, G., Food Chem., 2016, vol. 190, no. 12, pp. 1174–1181.CrossRefPubMedGoogle Scholar
  15. 15.
    Wu, H., Aam, B.B., Wang, W., Norberg, A.L., Sorlie, M., Eijsink, V.G.H., and Du, Y., Carbohydr. Res., 2012, vol. 89, no. 2, pp. 511–518.CrossRefGoogle Scholar
  16. 16.
    Yen, M.T., Yang, J.H., and Mau, J.L., Carbohydr. Res., 2009, vol. 75, no. 1, pp. 15–21.CrossRefGoogle Scholar
  17. 17.
    Aranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N., Galed, G., and Heras, A., Curr. Chem. Biol., 2009, vol. 3, no. 2, pp. 203–230.Google Scholar
  18. 18.
    Nunthanid, J., Puttipipatkhachorn, S., Yamamoto, K., and Peck, G.E., Drug Dev. Ind. Pharm., 2001, vol. 27, no. 2, pp. 143–157.CrossRefPubMedGoogle Scholar
  19. 19.
    Del Nobile, M.A., Conte, A., Buonocore, G.G., Incoronato, A.L., Massaro, A., and Panza, O., J. Food Eng., 2009, vol. 93, no. 1, pp. 1–6.CrossRefGoogle Scholar
  20. 20.
    Mendes, J.F., Paschoalin, R.T., Carmona, V.B., Sena, NetoA.R., Marques, A.C.P., Marconcini, J.M., Mattoso, L.H.C., Medeiros, E.S., and Oliveira, J.E., Carbohydr. Res., 2016, vol. 137, pp. 452–458.CrossRefGoogle Scholar
  21. 21.
    Liu, J., Meng, C., Liu, S., Kan, J., and Jin, C., Food Hydrocoll., 2017, vol. 63, pp. 457–466.CrossRefGoogle Scholar
  22. 22.
    Eca, K.S., Sartori, T., and Menegalli, F.C., Brazilian J. Food Technol., 2014, vol. 17, no. 2, pp. 98–112.CrossRefGoogle Scholar
  23. 23.
    Yuan, G., Chen, X., and Li, D., Food Res. Int., 2016, vol. 89, pp. 117–128.CrossRefPubMedGoogle Scholar
  24. 24.
    Xing, Y., Xu, Q., Li, X., Chen, C., Ma, L., Li, S., Che, Z., and Lin, H., Int. J. Polym. Sci., 2016, pp. 1–24.Google Scholar
  25. 25.
    Kumar, R.M.N.V., Muzzarelli, R.A.A., Sashiwa, H., and Domb, A.J., Chem. Rev., 2004, vol. 104, no. 12, pp. 6017–6084.CrossRefPubMedGoogle Scholar
  26. 26.
    Liu, J., Pu, H., Liu, S., Kan, J., and Jin, C., Carbohydr. Res., 2017, vol. 174, pp. 999–1017.CrossRefGoogle Scholar
  27. 27.
    Sancheti, S., Sancheti, S., Bafna, M., and Seo, S.Y., Med. Chem. Res., 2011, vol. 20, no. 8, pp. 1181–1187.CrossRefGoogle Scholar
  28. 28.
    Oliver, S., Vittorio, O., Cirillo, G., and Boyer, C., Polym. Chem., 2016, vol. 7, no. 8, pp. 1529–1544.CrossRefGoogle Scholar
  29. 29.
    Hu, Q. and Luo, Y., Carbohydr. Res., 2016, vol. 151, pp. 624–639.CrossRefGoogle Scholar
  30. 30.
    Schreiber, S.B., Bozell, J.J., Hayes, D.G., and Zivanovic, S., Food Hydrocoll., 2013, vol. 33, no. 2, pp. 207–214.CrossRefGoogle Scholar
  31. 31.
    Badhani, B., Sharma, N., and Kakkar, R., RSC Adv., 2015, vol. 5, no. 35, pp. 27540–27557.CrossRefGoogle Scholar
  32. 32.
    Božič, M., Štrancar, J., and Kokol., V., React. Funct. Polym., 2013, vol. 73, no. 10, pp. 1377–1383.CrossRefGoogle Scholar
  33. 33.
    Huang, J., Zhao, D., Hu, S., Mao, J., and Mei, L., Carbohydr. Res., 2012, vol. 87, no. 3, pp. 2231–2236.CrossRefGoogle Scholar
  34. 34.
    Liu, J., Liu, S., Chen, Y., Zhang, L., Kan, J., and Jin, C., Food Hydrocoll., 2017, vol. 71, pp. 176–186.CrossRefGoogle Scholar
  35. 35.
    Wu, C., Tian, J., Li, S., Wu, T., Hu, Y., Chen, S., Sugawara, T., and Ye, X., Carbohydr. Res., 2016, vol. 146, pp. 10–19.CrossRefGoogle Scholar
  36. 36.
    Dutta, P.K., Tripathi, S., Mehrotra, G.K., and Dutta, J., Food Chem., 2009, vol. 114, no. 4, pp. 1173–1182.CrossRefGoogle Scholar
  37. 37.
    Sun, X., Wang, Z., Kadouh, H., and Zhou, K., LWT— Food Sci. Technol., 2014, vol. 57, no. 1, pp. 83–89.CrossRefGoogle Scholar
  38. 38.
    Aljawish, A., Muniglia, L., Klouj, A., Jasniewski, J., Scher, J., and Desobry, S., Food Hydrocoll., 2016, vol. 60, pp. 551–558.CrossRefGoogle Scholar
  39. 39.
    Mathew, S. and Abraham, T.E., Food Hydrocoll., 2008, vol. 22, no. 5, pp. 826–835.CrossRefGoogle Scholar
  40. 40.
    Fernández-Pan, I., Maté, J.I., Gardrat, C., and Coma, V., Food Hydrocoll., 2015, vol. 51, pp. 60–68.CrossRefGoogle Scholar
  41. 41.
    Nostro, A. and Papalia, T., Recent Pat. Antiinfect. Drug Discov., 2012, vol. 7, no. 1, pp. 28–35.CrossRefPubMedGoogle Scholar
  42. 42.
    Talón, E., Trifkovic, K.T., Nedovic, V.A., Bugarski, B.M., Vargas, M., Chiralt, A., and González-Martínez, C., Carbohydr. Res., 2017, vol. 157, pp. 1153–1161.CrossRefGoogle Scholar
  43. 43.
    Souza, V.G.L., Fernando, A.L., Pires, J.R.A., Rodrigues, P.F., Lopes, A.A.S., and Fernandes, F.M.B., Ind. Crops Prod., 2017, vol. 107, pp. 565–572.CrossRefGoogle Scholar
  44. 44.
    Dorman, H.J. and Deans, S.G., J. Appl. Microbiol., 2000, vol. 88, no. 2, pp. 308–316.CrossRefPubMedGoogle Scholar
  45. 45.
    Tiwari, B.K., Valdramidis, V.P., O’Donnell, C.P., Muthukumarappan, K., Bourke, P., and Cullen, P.J., J. Agric. Food Chem., 2009, vol. 57, no. 14, pp. 5987–6000.CrossRefPubMedGoogle Scholar
  46. 46.
    Celikel, N. and Kavas, G., Czech J. Food Sci., 2008, vol. 26, no. 3, pp. 174–181.CrossRefGoogle Scholar
  47. 47.
    Thakhiew, W., Devahastin, S., and Soponronnarit, S., J. Food Eng., 2013, vol. 119, no. 1, pp. 140–149.CrossRefGoogle Scholar
  48. 48.
    Sun, L., Sun, J., Chen, L., Niu, P., Yang, X., and Guo, Y., Carbohydr. Res., 2017, vol. 163, pp. 81–91.CrossRefGoogle Scholar
  49. 49.
    Moradi, M., Tajik, H., Razavi, RohaniS.M., Oromiehie, A.R., Malekinejad, H., Aliakbarlu, J., and Hadian, M., LWT—Food Sci. Technol., 2012, vol. 46, no. 2, pp. 477–484.Google Scholar
  50. 50.
    Rubilar, J.F., Cruz, R.M.S., Zuñiga, R.N., Khmelinskii, I., and Vieira, M.C., Int. J. Biol. Macromol., 2017, vol. 104, pp. 197–203.CrossRefPubMedGoogle Scholar
  51. 51.
    Siripatrawan, U. and Vitchayakitti, W., Food Hydrocoll., 2016, vol. 61, pp. 695–702.CrossRefGoogle Scholar
  52. 52.
    Sabaghi, M., Maghsoudlou, Y., Khomeiri, M., and Ziaiifar, A.M., Postharvest Biol. Technol., 2015, vol. 110, pp. 224–228.CrossRefGoogle Scholar
  53. 53.
    Ruiz-Navajas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J.A., and Fernández-López, J., Food Control, 2013, vol. 30, no. 2, pp. 386–392.CrossRefGoogle Scholar
  54. 54.
    Munhuweyi, K., Caleb, O.J., Lennox, C.L., van Reenen, A.J., and Opara, U.L., Postharvest Biol. Technol., 2017, vol. 129, pp. 9–22.CrossRefGoogle Scholar
  55. 55.
    Severino, R., Vu, K.D., Donsi, F., Salmieri, S., Ferrari, G., and Lacroix, M., J. Food Eng., 2014, vol. 124, pp. 1–10.CrossRefGoogle Scholar
  56. 56.
    Cháfer, M., Sánchez-González, L., González- Martínez, C., and Chiralt, A., J. Food Sci., 2012, vol. 77, no. 8, pp. 182–187.CrossRefGoogle Scholar
  57. 57.
    Wang, L., Liu, F., Jiang, Y., Chai, Z., Li, P., Cheng, Y., Jing, H., and Leng, X., J. Agric. Food Chem., 2011, vol. 59, no. 23, pp. 12411–12419.CrossRefPubMedGoogle Scholar
  58. 58.
    Jenssen, H., Hamill, P., and Hancock, R.E.W., Clin. Microbiol. Rev., 2006, vol. 19, no. 3, pp. 491–511.CrossRefPubMedGoogle Scholar
  59. 59.
    Yang, S.-C., Lin, C.-H., Sung, C.T., and Fang, J.-Y., Front. Microbiol., 2014, vol. 5, pp. 1–10.Google Scholar
  60. 60.
    Sharma, V., Aseri, G.K., Sohal, J.S., Khare, N., and Kumar, V., IJPTB. Int. J. Pharm. Technol. Biotechnol., 2016, vol. 3, no. 1, pp. 55–82.Google Scholar
  61. 61.
    Gharsallaoui, A., Oulahal, N., Joly, C., and Degraeve, P., Crit. Rev. Food Sci. Nutr., 2016, vol. 56, no. 8, pp. 1262–1274.CrossRefPubMedGoogle Scholar
  62. 62.
    Driessen, A.J.M., Hooven, H.W., Kuiper, W., Van de Kamp, M., Sahl, H.-G., Konings, R.N.H., and Konings, W.N., Biochemistry, 1995, vol. 34, no. 49, pp. 1606–1614.CrossRefPubMedGoogle Scholar
  63. 63.
    Karam, L., Jama, C., Dhulster, P., and Chihib, N.E., J. Mater. Environ. Sci., 2013, vol. 4, no. 5, pp. 798–821.Google Scholar
  64. 64.
    Gharsallaoui, A., Joly, C., Oulahal, N., and Degraeve, P., Crit. Rev. Food Sci. Nutr., 2016, vol. 56, no. 8, pp. 1275–1289.CrossRefPubMedGoogle Scholar
  65. 65.
    Zink, J., Wyrobnik, T., Prinz, T., and Schmid, M., Int. J. Mol. Sci., 2016, vol. 17, no. 9, pp. 1376–1421.CrossRefGoogle Scholar
  66. 66.
    Elsabee, M.Z. and Abdou, E.S., Mater. Sci. Eng., vol. 33, no. 4, pp. 1819–1841.Google Scholar
  67. 67.
    Cé, N., Noreña, C.P.Z., and Brandelli, A., CYTA—J. Food, 2012, vol. 10, no. 1, pp. 21–26.CrossRefGoogle Scholar
  68. 68.
    Motta, A.S., Lorenzini, D.M., and Brandelli, A., Curr. Microbiol., 2007, vol. 54, no. 4, pp. 282–286.CrossRefPubMedGoogle Scholar
  69. 69.
    Duran, M., Aday, M.S., Zorba, N.N.D., Temizkan, R., Büyükcan, M.B., and Caner, C., Food Bioprod. Process., 2016, vol. 98, pp. 354–363.CrossRefGoogle Scholar
  70. 70.
    Park, S.I., Daeschel, M.A., and Zhao, Y., J. Food Sci., 2004, vol. 69, no. 8, pp. M215–M221.CrossRefGoogle Scholar
  71. 71.
    Duan, J., Park, S.I., Daeschel, M.A., and Zhao, Y., J. Food Sci., 2007, vol. 72, no. 9, pp. M355–362.CrossRefPubMedGoogle Scholar
  72. 72.
    Duan, J., Kim, K., Daeschel, M.A., and Zhao, Y., J. Food Sci., 2008, vol. 73, no. 6, pp. M321–M329.CrossRefPubMedGoogle Scholar
  73. 73.
    Rhoades, J. and Roller, S., Appl. Environ. Microbiol., 2000, vol. 66, no. 1, pp. 80–86.CrossRefPubMedGoogle Scholar
  74. 74.
    Zeng, L., Qin, C., Chi, W., Wang, L., Ku, Z., and Li, W., Carbohydr. Res., 2007, vol. 67, no. 4, pp. 551–558.CrossRefGoogle Scholar
  75. 75.
    Wang, H.Y., Qian, H., and Yao, W.R., Food Chem., 2011, vol. 128, no. 3, pp. 573–584.CrossRefGoogle Scholar
  76. 76.
    Ulbin-Figlewicz, N., Zimoch-Korzycka, A., and Jarmoluk, A., Food Bioprocess. Technol., 2014, vol. 7, no. 12, pp. 3646–3654.CrossRefGoogle Scholar
  77. 77.
    Brock, J.H., Biochem. Cell Biol., 2012, vol. 90, no. 3, pp. 245–251.CrossRefPubMedGoogle Scholar
  78. 78.
    Jahani, S., Shakiba, A., and Jahani, L., Int. J. Infect., 2015, vol. 2, no. 3.Google Scholar
  79. 79.
    Brown, C.A., Wang, B., and Oh, J.H., J. Food Prot., 2008, vol. 71, no. 2, pp. 319–324.CrossRefPubMedGoogle Scholar
  80. 80.
    Zhang, S. and Mustapha, A., J. Food Prot., 1999, vol. 62, no. 10, pp. 1123–1127.CrossRefPubMedGoogle Scholar
  81. 81.
    Mohamed, C., Clementine, K.A., Didier, M., Gérard, L., and Marie Noëlle, D.C., Food Hydrocoll., 2013, vol. 30, no. 2, pp. 576–580.CrossRefGoogle Scholar
  82. 82.
    Sharma, S., Singh, A.K., Kaushik, S., Sinha, M., Singh, R.P., Sharma, P., Sirsohi, H., Kaur, P., and Singh, T.P., Int. J. Biochem. Mol. Biol., 2013, vol. 4, no. 3, pp. 108–128.PubMedGoogle Scholar
  83. 83.
    Kussendrager, K.D. and van Hooijdonk, A.C.M., Br. J. Nutr., 2000, vol. 84, no. 1, pp. 19–S25.Google Scholar
  84. 84.
    Cissé, M., Montet, D., Tapia, M.S., Loiseau, G., and Ducamp-Collin, M.N., Food Hydrocoll., 2012, vol. 28, no. 2, pp. 361–366.CrossRefGoogle Scholar
  85. 85.
    Jasour, M.S., Ehsani, A., Mehryar, L., and Naghibi, S.S., J. Sci. Food Agric., 2015, vol. 95, no. 6, pp. 1373–1378.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Bioengineering, Fundamentals of Biotechnology Federal Research CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations