Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 5, pp 496–500 | Cite as

Antimicrobial Activity of Silver Nanoparticles in a Carboxymethyl Chitin Matrix Obtained by the Microwave Hydrothermal Method

  • V. A. Alexandrova
  • L. N. Shirokova
  • V. S. Sadykova
  • A. E. Baranchikov
Article
  • 6 Downloads

Abstract

Silver nanoparticles have been obtained in a matrix of 6-O-carboxymethyl chitin in the presence of D-glucose as a reducing agent by microwave hydrothermal synthesis. The TEM results show that the silver nanoparticles have a spherical shape; the particle size range is 3–20 nm. The resulting colloidal solution of silver nanoparticles had a strong bacterial effect on gram-positive bacteria Staphylococcus aureus ATCC 21027 (=209 P), Bacillus subtilis ATCC 6633, and, to a lesser extent, on gram-negative bacteria Escherichia coli АТСС 25922. The synthesized silver nanoparticles showed pronounced fungistatic activity against A. niger INA 00760.

Keywords

microwave hydrothermal synthesis silver nanoparticles carboxymethyl chitin bactericidal activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dos, SantosC.A., Seckler, M.M., Ingle, A.P., Gupta, I., Galdiero, S., Galdiero, M., Gade, A., and Rai, M., J. Pharm. Sci., 2014, vol. 103, no. 7, pp. 1931–1944.CrossRefGoogle Scholar
  2. 2.
    Honary, S., Ghajar, K., Khazaeli, P., and Shalchian, P., Trop. J. Pharm. Res., 2011, vol. 10, no. 1, pp. 69–74.CrossRefGoogle Scholar
  3. 3.
    Kiryukhin, M.V., Sergeev, B.M., Sergeyev, V.G., and Prusov, A.N., Polym. Sci. Ser. B, 2000, vol. 42, nos. (5–6), pp. 158–162.Google Scholar
  4. 4.
    Wei, D., Sun, W., Qian, W., Ye, Y., and Ma, X., Carbohydr. Res., 2009, vol. 344, no. 17, pp. 2375–2382.CrossRefPubMedGoogle Scholar
  5. 5.
    Shameli, K., Ahmad, M.B., Yunus, W.M.Z.W., Ibrahim, N.A., Gharayebi, Y., and Sedaghat, S., Int. J. Nanomed., 2010, no. 5, pp. 1067–1077.CrossRefGoogle Scholar
  6. 6.
    Mostafavi, M., Keghouche, N., and Delcourt, M.O., Chem. Phys. Lett., 1990, vol. 169, no. 1, pp. 81–84.CrossRefGoogle Scholar
  7. 7.
    Vikhoreva, G.A., Gladyshev, D.Yu., Bazt, M.R., Barkov, V.V., and Gal’braikh, L.S., Cellulose Chem. Technol., 1992, vol. 26, no. 6, pp. 663–674.Google Scholar
  8. 8.
    Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard, 9th ed., Clinical and Laboratory Standards Institute, 2012, vol. 32, no. 2.Google Scholar
  9. 9.
    Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv (A Guide to Preclinical Drug Research), Mironov, A.N., Ed., Moscow: Grif i K, 2012.Google Scholar
  10. 10.
    Bozanic, D.K., Trandafilovic, L.V., Luyt, A.S., and Djokovic, V., React. Funct. Polym., 2010, vol. 70, pp. 869–873.CrossRefGoogle Scholar
  11. 11.
    Arif, D., Niazi, M.B.K., Ul-Haq, N., Anwar, M.N., and Hashmi, E., Fibers Polym., 2015, vol. 16, no. 7, pp. 1519–1526.CrossRefGoogle Scholar
  12. 12.
    Murugan, K., Anitha, J., Suresh, U., Rajaganesh, R., Panneerselvam, C., Aziz, A.T., Tseng, L.-C., Kalimuthu, K., Alsalhi, M.S., Devanesan, S., Nicoletti, M., Sarkar, S.K., Benelli, G., and Hwang, J.-S., Hydrobiologia, 2017, vol. 737, pp. 335–350.CrossRefGoogle Scholar
  13. 13.
    Nithya, A., Jeeva Kumari, H.L., Rokesh, K., Ruckmani, K., Jeganathan, K., and Jothivenkatachalam, K., J. Photochem. Photobiol. B, 2015, vol. 153, pp. 412–422.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang, N., Hu, B., Chen, M.L., and Wang, J.H., Nanotecnology, 2015, vol. 26, pp. 1–8.Google Scholar
  15. 15.
    Chook, S.W., Chia, C.H., Zakaria, S., Neoh, H.M., and Jamal, R., New J. Chem., 2017, vol. 12, no. 41, pp. 5061–5065.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. A. Alexandrova
    • 1
  • L. N. Shirokova
    • 1
  • V. S. Sadykova
    • 2
  • A. E. Baranchikov
    • 3
  1. 1.A.V. Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.G.F. Gause Institute of New AntibioticsMoscowRussia
  3. 3.N.S. Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations