Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 4, pp 396–403 | Cite as

Antimicrobial Peptaibols, Trichokonins, Inhibit Mycelial Growth and Sporulation and Induce Cell Apoptosis in the Pathogenic Fungus Botrytis cinerea

Article

Abstract

Trichokonins (TKs) are antimicrobial peptaibols extracted from Trichoderma pseudokoningii strain SMF2. In this paper, it was discovered that TK VI, the main active ingredient of TKs, had a profound inhibitory effect on the growth and sporulation of the moth orchid gray mold, Botrytis cinerea. In addition, TK VI increased the cell membrane permeability of the pathogen. Further investigation of nuclear DNA fragmentation, subcellular structure disintegration, and mitochondrial membrane potential depolarization, as well as the appearance of reactive oxygen species, indicated that TK VI could induce programmed cell death in the necrotrophic pathogenic fungus B. cinerea.

Keywords

Trichoderma pseudokoningii trichokonins Phalaenopsis Botrytis cinerea inhibition apoptosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strange, R.N. and Scott, P.R., Annu. Rev. Phytopathol., 2005, vol. 43, pp. 83–116.CrossRefPubMedGoogle Scholar
  2. 2.
    Benitez, T., Rincon, A.M., Limon, M.C., and Codon, A.C., Int. Microbiol., 2004, vol. 7, no. 4, pp. 249–260.PubMedGoogle Scholar
  3. 3.
    Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., and Lorito, M., Nat. Rev. Microbiol., 2004, vol. 2, no. 1, pp. 43–56.CrossRefPubMedGoogle Scholar
  4. 4.
    Viterbo, A., Harel, M., Horwitz, B., Chet, I., and Mukherjee, P., Appl. Environ. Microbiol., 2005, vol. 71, no. 10, pp. 6241–6246.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Howell, C.R., Plant Dis., 2003, vol. 87, no. 1, pp. 4–10.CrossRefGoogle Scholar
  6. 6.
    Sharman, G.J., Try, A.C., Williams, D.H., Ainsworth, A.M., Beneyto, R., Gibson, T.M., et al., Biochem. J., 1996, vol. 320, no. 3, pp. 723–728.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wiest, A., Grzegorski, D., Xu, B.W., Goulard, C., Rebuffat, S., Ebbole, D.J., et al., J. Biol. Chem., 2002, vol. 277, no. 23, pp. 20862–20868.CrossRefPubMedGoogle Scholar
  8. 8.
    Luo, Y., Zhang, D.D., Dong, X.W., Zhao, P.B., Chen, L.L., Song, X.Y., et al., FEMS Microbiol. Lett., 2010, vol. 313, no. 2, pp. 120–126.CrossRefPubMedGoogle Scholar
  9. 9.
    Shi, M., Wang, H.N., Xie, S.T., Luo, Y., Sun, C.Y., Chen, X.L., and Zhang, Y.Z., Mol. Cancer, 2010, vol. 9, no. 3, pp. 26–32.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shi M., Chen L., Wang, X.W., Zhang, T., Zhao, P.B., Song, X.Y., et al., Microbiology, 2012, vol. 158, no. 1, pp. 166–175.CrossRefPubMedGoogle Scholar
  11. 11.
    Song, X.Y., Shen, Q.T., Xie, S.T., Chen, X.L., Sun, C.Y., and Zhang, Y.Z., FEMS Microbiol. Lett., 2006, vol. 260, no. 1, pp. 119–125.CrossRefGoogle Scholar
  12. 12.
    Song, X.Y., Xie, S.T., Chen, X.L., Sun, C.Y., Shi, M., and Zhang, Y.Z., J. Biotechnol., 2007, vol. 131, no. 2, pp. 209–215.CrossRefPubMedGoogle Scholar
  13. 13.
    Whitmore, L. and Wallace, B.A., Nucleic Acids Res., 2004, vol. 32, pp. D593–D594.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li, H.Y., Luo, Y., Zhang, X.S., Shi, W.L., Gong, Z.T., Shi, M., et al., FEMS Microbiol. Lett., 2014, vol. 354, no. 1, pp. 75–82.CrossRefPubMedGoogle Scholar
  15. 15.
    Liu, Z.H., Wang, Y., Zhou, C.Y., Kang, G.J., Guo, W.Y., and Pei, X.P., J. Xinxiang Med. Univ., 2014, vol. 31, no. 1, pp. 22–25.Google Scholar
  16. 16.
    Yang, Z.H. and Dickman, M.B., Mol. Plant Microb. Interact., 1999, vol. 12, no. 5, pp. 430–439.CrossRefGoogle Scholar
  17. 17.
    Cheng, J., Park, T.S., Chio, L.C., Fischl, A.S., and Ye, X.S., Mol. Cell. Biol., 2003, vol. 23, no. 1, pp. 163–177.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wada, S., Iida, A., Asami, K., Tachikawa, E., and Fujita, T., Biochim. Biophys. Acta, 1997, vol. 1325, no. 2, pp. 209–214.CrossRefPubMedGoogle Scholar
  19. 19.
    Hacker, G., Cell Tissue Res., 2000, vol. 301, pp. 5–17.CrossRefPubMedGoogle Scholar
  20. 20.
    Eisenberg, T., Buttner, S., Kroemer, G., and Madeo, F., Apoptosis, 2007, vol. 12, no. 5, pp. 1011–1023.CrossRefPubMedGoogle Scholar
  21. 21.
    Pereira, C., Silva, R.D., Johansson, L.B., Sousa, M.J., and Corte-Real, M., Biochim. Biophys. Acta, 2008, vol. 1783, no. 7, pp. 1286–1302.CrossRefPubMedGoogle Scholar
  22. 22.
    Perrone, G.G., Tan, S.X., and Dawes, I.W., Biochim. Biophys. Acta, 2008, vol. 1783, no. 7, pp. 1354–1368.CrossRefPubMedGoogle Scholar
  23. 23.
    Leiter, E., Szappanos, H., Oberparleiter, C., Kaiserer, L., Csernoch, L., Pusztahelyi, T., et al., Antimicrob. Agents Chemother., 2005, vol. 49, no. 6, pp. 2445–2453.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.College of AgricultureLiaocheng UniversityLiaocheng, ShandongChina
  2. 2.Pingdu Middle Specialized SchoolQingdao, ShandongChina
  3. 3.Shandong Agricultural UniversityTaian, ShandongChina

Personalised recommendations