Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 4, pp 442–448 | Cite as

Optimization of Metabolite Profiling for Black Medick (Medicago lupulina) and Peas (Pisum sativum)

  • R. K. Puzanskiy
  • V. V. Yemelyanov
  • M. S. Kliukova
  • A. L. Shavarda
  • O. Yu. Shtark
  • A. P. Yurkov
  • M. F. Shishova
Article

Abstract

Metabolic profiling is a key approach in current basic and applied research in biology. Comparative analysis of different metabolite extraction methods for pea (P. sativum) and black medick (M. lupulina) made it possible to find the optimal conditions for metabolite extraction and subsequent detection by gas chromatography coupled with mass spectrometry. The optimized method was shown to be reliable for assessment of the organ and species metabolic profiles for roots and leaves in pea and black medick plants.

Keywords

metabolite extraction gas chromatography mass spectrometry peas black medick 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oliver, S.G., Winson, M.K., Kell, D.B., and Baganz, F., Trends Biotechnol., 1998, vol. 16, no. 9, pp. 373–378.CrossRefPubMedGoogle Scholar
  2. 2.
    Tweeddale, H., Notley-McRobb, L., and Ferenci, T., J. Bacteriol., 1998, vol. 180, no. 19, pp. 5109–5116.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Dalgliesh, C.E., Horning, E.C., Horning, M.G., Knox, K.L., and Yarger, K., Biochem. J., 1966, vol. 101, no. 3, pp. 792–810.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Horning, E.C. and Horning, M.G., Clin. Chem., 1971, vol. 17, no. 8, pp. 802–809.PubMedGoogle Scholar
  5. 5.
    Fiehn, O., Kopka, J., Trethewey, R.N., and Willmitzer, L., Anal. Chem., 2000, vol. 72, no. 15, pp. 3573–3580.CrossRefPubMedGoogle Scholar
  6. 6.
    Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N., and Willmitzer, L., Plant J., 2000, vol. 23, no. 1, pp. 131–142.CrossRefPubMedGoogle Scholar
  7. 7.
    Dixon, R.A., Gang, D.R., Charlton, A.J., Fiehn, O., Kuiper, H.A., Reynolds, T.L., Tjeerdema, R.S., Jeffery, E.H., German, J.B., Ridley, W.P., and Seiber, J.N., J. Agric. Food Chem., 2006, vol. 54, no. 24, pp. 8984–8994.CrossRefPubMedGoogle Scholar
  8. 8.
    Stewart, D., Shepherd, L.V.T., Hall, R.D., and Fraser, P.D., in Annual Plant Reviews, Biology of Plant Metabolomics, Hall, R.D., Ed., Oxford: Blackwell Publishing Ltd., 2011.Google Scholar
  9. 9.
    Puzanskiy, R.K., Yemelyanov V.V., Gavrilenko, T.A., and Shishova, M.F., Russ. J. Genet. Appl. Res., 2017, vol. 7, no. 7, pp. 744–756.CrossRefGoogle Scholar
  10. 10.
    Choi, Y.H. and Verpoorte, R., Phytochem. Anal., 2014, vol. 25, no. 4, pp. 289–290.CrossRefPubMedGoogle Scholar
  11. 11.
    Bijttebier, S., Van der Auwera, A., Foubert, K., Voorspoels, S., Pieters, L., and Apers, S., Anal. Chim. Acta, 2016, vol. 935, pp. 136–150.CrossRefPubMedGoogle Scholar
  12. 12.
    Weckwerth, W., Metabolomics: Methods and Protocols (Methods in Molecular Biology), Weckwerth, W., Ed., Totowa, New Jersey: Humana Press Inc., 2007.Google Scholar
  13. 13.
    Qi, X., Chen, X., and Wang, Y., Plant Metabolomics: Methods and Applications, Qi, X., Chen, X., and Wang, Y., Eds., Beijing: Chemical Industry Press, 2010.Google Scholar
  14. 14.
    Barh, D., Khan, M.S., and Davies, E., PlantOmics: The Omics of Plant Science, Barh, D., Khan, M.S., and Davies, E., Eds., New Delhi: Springer, 2015.Google Scholar
  15. 15.
    Kotlova, E.R., Puzanskii, R.K., Danchul, T.Yu., Shagova, L.I., Pautova, I.A., and Shavarda, A.L., Rastit. Resur., 2016, vol. 52, no. 4, pp. 591–609.Google Scholar
  16. 16.
    Lee, D.Y. and Fiehn, O., Plant Methods, 2008, vol. 4, no. 1. e7.CrossRefGoogle Scholar
  17. 17.
    Puzanskiy, R.K., Shavarda, A.L., Tarakhovskaya, E.R., and Shishova, M.F., Appl. Biochem. Microbiol., 2015, vol. 51, no. 1, pp. 83–94.CrossRefGoogle Scholar
  18. 18.
    van Look, G., Simchen, G., and Heberle, J., Silylating, Agents, Derivatization Reagents. Protecting-Group Reagents. Organosilicon Compounds. Analytical Applications. Synthetic Applications, van Look, G., Simchen, G., and Heberle, J., Eds., Buchs, Switzerland: Fluka Chemie AG, 1995.Google Scholar
  19. 19.
    Lu, W., Su, X., Klein, M.S., Lewis, I.A., Fiehn, O., and Rabinowitz, J.D., Annu. Rev. Biochem., 2017, vol. 86, pp. 277–304.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mushtaq, M.Y., Choi, Y.H., Verpoorte, R., and Wilson, E.G., Phytochem. Anal., 2014, vol. 25, no. 4, pp. 291–306.CrossRefPubMedGoogle Scholar
  21. 21.
    Fiehn, O., Curr. Protoc. Mol. Biol., 2016. E114.30.4.1–30.4.32.Google Scholar
  22. 22.
    Schliemann, W., Ammer, C., and Strack, D., Phytochemistry, 2008, vol. 69, no. 1, pp. 112–146.CrossRefPubMedGoogle Scholar
  23. 23.
    Engvild, K.C., Theor. Appl. Genet., 1987, vol. 74, no. 6, pp. 711–713.CrossRefPubMedGoogle Scholar
  24. 24.
    Hoagland, D.R. and Arnon, D.I., The Water Culture Method for Growing Plants without Soil. California Agricultural Experiment Station Circulation, Hoagland, D.R. and Arnon, D.I., Eds., Berkley, California: College of Agriculture University of California, 1938, vol.347.Google Scholar
  25. 25.
    Yurkov, A.P., Jacobi, L.M., Gapeeva, N.E., Stepanova, G.V., and Shishova, M.F., Russ. J. Dev. Biol., 2015, vol. 46, no. 5, pp. 263–275.CrossRefGoogle Scholar
  26. 26.
    Barsch, A., Tellstroem, V., Patschkowski, T., Kuster, H., and Niehaus, K., Mol. Plant Microbe Interact., 2006, vol. 19, no. 9, pp. 998–1013.CrossRefPubMedGoogle Scholar
  27. 27.
    Leo, A., Hansch, C., and Elkins, D., Chem. Rev., 1971, vol. 71, no. 6, pp. 525–616.CrossRefGoogle Scholar
  28. 28.
    Shtark, O.Y., Borisov, A.Y., Zhukov, V.A., Provorov, N.A., and Tikhonovich, I.A., in Soil Microbiology and Sustainable Crop Production, Dixon, G.R. and Tilston, E.L., Eds., Dordrecht, Netherlands: Springer Science, Business Media, 2010.Google Scholar
  29. 29.
    Shtark, O.Y., Borisov, A.Y., Zhukov, V.A., and Tikhonovich, I.A., Symbiosis, 2012, vol. 57, no. 3, pp. 51–62.CrossRefGoogle Scholar
  30. 30.
    Lüscher, A., Mueller-Harvey, I., Soussana, J.F., Rees, R.M., and Peyraud, J.L., Grass Forage Sci., 2014, vol. 69, no. 2, pp. 206–228.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Huhman, D.V., Berhow, M.A., and Sumner, L.W., J. Agric. Food Chem., 2005, vol. 53, no. 6, pp. 1914–1920.CrossRefPubMedGoogle Scholar
  32. 32.
    Aranjuelo, I., Tcherkez, G., Molero, G., Gilard, F., Avice, J.C., and Nogues, S., J. Exp. Bot., 2013, vol. 64, no. 4, pp. 885–897.CrossRefPubMedGoogle Scholar
  33. 33.
    Poincelot, R.P., Plant Physiol., 1976, vol. 58, no. 4, pp. 595–598.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Larsson, C. and Møller, I.M., in The Plant Plasma Membrane: Structure, Function and Molecular Biology, Larsson, C. and Møller, I.M., Eds., Berlin: Springer-Verlag, 1990.Google Scholar
  35. 35.
    Rochester, C.P., Kjellbom, P., Andersson, B., and Larsson, C., Arch. Biochem. Biophys., 1987, vol. 255, no. 2, pp. 385–391.CrossRefPubMedGoogle Scholar
  36. 36.
    Schmitz, O., Danneberg, G., Hundeshagen, B., Klingner, A., and Bothe, H., J. Plant Physiol., 1991, vol. 139, no. 1, pp. 106–114.CrossRefGoogle Scholar
  37. 37.
    Gresshoff, P.M., Hayashi, S., Biswas, B., Mirzaei, S., Indrasumunar, A., Reid, D., Samuel, S., Tollenaere, A., van Hameren, B., Hastwell, A., Scott, P., and Ferguson, B.J., J. Plant Physiol., 2014, vol. 172, no. 1, pp. 128–136.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • R. K. Puzanskiy
    • 1
  • V. V. Yemelyanov
    • 1
  • M. S. Kliukova
    • 1
    • 3
  • A. L. Shavarda
    • 2
  • O. Yu. Shtark
    • 1
    • 3
  • A. P. Yurkov
    • 1
    • 3
  • M. F. Shishova
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Center for Molecular and Cell TechnologiesSt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.All-Russia Research Institute for Agricultural MicrobiologySt. PetersburgRussia

Personalised recommendations