Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 4, pp 337–351 | Cite as

Prospects for the Application of Yeast Display in Biotechnology and Cell Biology (Review)

  • M. V. Padkina
  • E. V. Sambuk
Article
  • 57 Downloads

Abstract

The technology of the yeast cell surface display, which appeared 20 years ago and was based on the displaying of target proteins on the cell surface via fusion to an abundant cell wall protein finds broad application in basic and applied research. The main advantage of the cell surface display on the basis of eukaryotic microorganisms—yeast—is the opportunity for correct modification of mammalian proteins. The cell surface display is an important tool for the analysis and understanding of protein function and protein–protein interactions and for the screening of novel clones from peptide and protein libraries. This technology makes it possible to obtain cells with novel abilities, such as catalytic functions and affinity binding to valuable ligands, including rare and heavy metals. It provides the chance to use yeast in biotechnology and in bioremediation and biomonitoring of the environment. The review considers the methods of obtaining a cell surface display on the basis of the yeasts Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica, the properties of anchor proteins, and the main fields of yeast display technology.

Keywords

yeast surface display anchor proteins immobilized enzymes stability metal recovery bioremediation biomonitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pack, S.P., Park, K., and Yoo, Y.J., Biotechnol. Lett., 2002, vol. 24, no. 22, p. 1919–1925.CrossRefGoogle Scholar
  2. 2.
    Smith, G.P., Science, 1985, vol. 228, no. 4705, pp. 1315–1317.PubMedCrossRefGoogle Scholar
  3. 3.
    Tan, Y., Tian, T., Liu, W., Zhu, Z., and Yang, C., Biotechnol. J., 2016, vol. 11, no. 6, pp. 732–745.PubMedCrossRefGoogle Scholar
  4. 4.
    Francisco, J.A. and Georgiou, G., Ann. N.Y. Acad. Sci., 1994, vol. 745, pp. 372–382.PubMedCrossRefGoogle Scholar
  5. 5.
    Samuelson, P., Gunneriusson, E., Nygren, P.A., and Stahl, S., J. Biotechnol., 2002, vol. 96, no. 2, pp. 129–154.PubMedCrossRefGoogle Scholar
  6. 6.
    Mazmanian, S.K., Liu, G., Ton-That, H., and Schneewind, O., Science, 1999, vol. 285, no. 5428, pp. 760–763.PubMedCrossRefGoogle Scholar
  7. 7.
    Stahl, S., Robert, A., Gunneriusson, E., Wernerus, H., Cano, F., Liljeqvist, S., Hansson, M., Nguyen, T.N., and Samuelson, P., Int. J. Med. Microbiol., 2000, vol. 290, no. 7, pp. 571–577.PubMedCrossRefGoogle Scholar
  8. 8.
    Piard, J.C., Hautefort, I., Fischetti, V.A., Ehrlich, S.D., Fons, M., and Gruss, A., J. Bacteriol., 1997, vol. 179, no. 9, pp. 3068–3072.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Narita, J., Okano, K., Kitao, T., Ishida, S., Sewaki, T., Sung, M.H., Fukuda, H., and Kondo, A., Appl. Environ. Microbiol., 2006, vol. 72, no. 1, pp. 269–275.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Tanaka, T. and Kondo, A., Biotechnol. Adv., 2015, vol. 33, no. 7, pp. 1403–1411.PubMedCrossRefGoogle Scholar
  11. 11.
    Lofblom, J., Wernerus, H., and Stahl, S., FEMS Microbiol. Letts., 2005, vol. 248, no. 2, pp. 189–198.CrossRefGoogle Scholar
  12. 12.
    Boder, E.T. and Wittrup, K.D., Nat. Biotechnol., 1997, vol. 15, no. 6, pp. 553–557.PubMedCrossRefGoogle Scholar
  13. 13.
    Shibasaki, S., Maeda, H., and Ueda, M., Anal. Sci., 2009, vol. 25, no. 1, pp. 41–49.PubMedCrossRefGoogle Scholar
  14. 14.
    Orlean, P., Genetics, 2012, vol. 192, no. 3, pp. 775–818.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Van der Vaart, J.M., te Biesebeke, R., Chapman, J.W., Toschka, H.Y., Klis, F.M., and Verrips, C.T., Appl. Environ. Microbiol., 1997, vol. 63, no. 2, pp. 615–620.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hamada, K., Terashima, H., Arisawa, M., and Kitada, K., J. Biol. Chem., 1998, vol. 273, no. 41, pp. 26946–26953.PubMedCrossRefGoogle Scholar
  17. 17.
    Tanaka, T., Yamada, R., Ogino, C., and Kondo, A., Appl. Microbiol. Biotechnol., 2012, vol. 95, no. 3, pp. 577–591.PubMedCrossRefGoogle Scholar
  18. 18.
    Goossens, K. and Willaert, R., Biotechnol. Lett., 2010, vol. 32, no. 11, pp. 1571–1585.PubMedCrossRefGoogle Scholar
  19. 19.
    Sato, N., Matsumoto, T., Ueda, M., Tanaka, A., Fukuda, H., and Kondo, A., Appl. Microbiol. Biotechnol., 2002, vol. 60, no. 4, pp. 469–474.PubMedCrossRefGoogle Scholar
  20. 20.
    Matsumoto, T., Fukuda, H., Ueda, M., Tanaka, A., and Kondo, A., Appl. Environ. Microbiol., 2002, vol. 68, no. 9, pp. 4517–4522.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Toh-E, A., Oguchi, T., Matsui, Y., Yasunaga, S., Nisogi, H., and Tanaka, K., Yeast, 1993, vol. 9, no. 5, pp. 481–494.PubMedCrossRefGoogle Scholar
  22. 22.
    Russo, P., Kalkkinen, N., Sareneva, H., Paakkola, J., and Makarow, M., Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, no. 18, pp. 3671–3675.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Mrsa, V., Seidl, T., Gentzsch, M., and Tanner, W., Yeast, 1997, vol. 13, no. 12, pp. 1145–1154.PubMedCrossRefGoogle Scholar
  24. 24.
    Castillo, L., Martinez, A.I., Garcera, A., Elorza, M.V., Valentin, E., and Sentandreu, R., Yeast, 2003, vol. 20, no. 11, pp. 973–983.PubMedCrossRefGoogle Scholar
  25. 25.
    Moukadiri, I. and Zueco, J., FEMS Yeast Res., 2001, vol. 1, no. 3, pp. 241–245.PubMedGoogle Scholar
  26. 26.
    Ecker, M., Deutzmann, R., Lehle, L., Mrsa, V., and Tanner, W., J. Biol. Chem., 2006, vol. 281, no. 17, pp. 11523–11529.PubMedCrossRefGoogle Scholar
  27. 27.
    Abe, H., Ohba, M., Shimma, Y., and Jigami, Y., FEMS Yeast Res., 2004, vol. 4, nos. 4–5, pp. 417–425.PubMedCrossRefGoogle Scholar
  28. 28.
    Wentz, A.E. and Shusta, E.V., Appl. Environ. Microbiol., 2007, vol. 73, no. 4, pp. 1189–1198.PubMedCrossRefGoogle Scholar
  29. 29.
    Rumjantsev, A.M., Bondareva, O.V., Padkina, M.V., and Sambuk, E.V., Sci. World J., 2014, vol. 2014, article ID 743615, p. 9. https://doi.org/10.1155/2014/743615. CrossRefGoogle Scholar
  30. 30.
    Cereghino, G.P.L., Cereghino, J.L., Ilgen, C., and Cregg, J.M., Curr. Opin. Biotech., 2002, vol. 13, no. 4, pp. 329–332.PubMedCrossRefGoogle Scholar
  31. 31.
    Heyland, J., Fu, J.A., Blank, L.M., and Schmid, A., Biotechnol. Bioeng., 2010, vol. 107, no. 2, pp. 357–368.PubMedCrossRefGoogle Scholar
  32. 32.
    Celik, E. and Callk, P., Biotechnol. Adv., 2012, vol. 30, no. 5, pp. 1108–1118.PubMedCrossRefGoogle Scholar
  33. 33.
    Mergler, M., Wolf, K., and Zimmermann, M., Appl. Microbiol. Biotechnol., 2004, vol. 63, no. 4, pp. 418–421.PubMedCrossRefGoogle Scholar
  34. 34.
    Khasa, Y.P., Conrad, S., Sengul, M., Plautz, S., Meagher, M.M., and Inan, M., Yeast, 2011, vol. 28, no. 3, pp. 213–226.PubMedCrossRefGoogle Scholar
  35. 35.
    Bankar, A.V., Kumar, A.R., and Zinjarde, S.S., Appl. Microbiol. Biotechnol., 2009, vol. 84, no. 5, pp. 847–865.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang, H.J., Le Dall, M.T., Wach, Y., Laroche, C., Belin, J.M., Gaillardin, C., and Nicaud, J.M., J. Bacteriol., 1999, vol. 181, no. 17, pp. 5140–5148.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Zvyagilskaya, R. and Persson, B.L., Cell. Biol. Int., 2005, vol. 29, no. 1, pp. 87–94.PubMedCrossRefGoogle Scholar
  38. 38.
    Madzak, C., Gaillardin, C., and Beckerich, J.M., J. Biotechnol., 2004, vol. 109, nos. 1–2, pp. 63–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Bordes, F., Fudalej, F., Dossat, V., Nicaud, J.M., and Marty, A., J. Microbiol. Methods, 2007, vol. 70, no. 3, pp. 493–502.PubMedCrossRefGoogle Scholar
  40. 40.
    Liu, H.H., Ji, X.J., and Huang, H., Biotechnol. Adv., 2015, vol. 33, no. 8, pp. 1522–1546.PubMedCrossRefGoogle Scholar
  41. 41.
    Sekova, V.Yu., Isakova, E.P., and Deryabina, Yu.I., App. Biochem. Microbiol., 2015, vol. 51, no. 3, pp. 290–304.Google Scholar
  42. 42.
    Zhu, Q. and Jackson, E.N., Curr. Opin. Biotechnol., 2015, vol. 36, pp. 65–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Yuzbasheva, E.Y., Yuzbashev, T.V., Laptev, I.A., Konstantinova, T.K., and Sineoky, S.P., Appl. Microbiol. Biotechnol., 2011, vol. 91, no. 3, pp. 645–654.PubMedCrossRefGoogle Scholar
  44. 44.
    Duquesne, S., Bozonnet, S., Bordes, F., Dumon, C., Nicaud, J.M., and Marty, A., PLoS One, 2014, vol. 9, no. 4. e95128. doi 10.1371/journal.pone.0095128PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Jaafar, L. and Zueco, J., Microbiology, 2004, vol. 150, no. 1, pp. 53–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Varfolomeev, S.D., Efremenko, E.N., and Krylova, L.P., Usp. Khim., 2010, vol. 79, no. 6, pp. 544–564.CrossRefGoogle Scholar
  47. 47.
    Akbas, M.Y. and Stark, B.C., J. Ind. Microbiol. Biotechnol., 2016, vol. 43, pp. 1593–1609.PubMedCrossRefGoogle Scholar
  48. 48.
    Van Zyl, W.H., Bloom, M., and Viktor, M.J., Appl. Microbiol. Biotechnol., 2012, vol. 95, no. 6, pp. 1377–1388.PubMedCrossRefGoogle Scholar
  49. 49.
    Su, G.D., Zhang, X., and Lin, Y., Biotechnol. Lett., 2010, vol. 32, no. 8, pp. 1131–1136.PubMedCrossRefGoogle Scholar
  50. 50.
    Murai, T., Ueda, M., Yamamura, M., Atomi, H., Shibasaki, Y., Kamasawa, N., Osumi, M., Amachi, T., and Tanaka, A., Appl. Environ. Microbiol., 1997, vol. 63, no. 4, pp. 1362–1366.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Murai, T., Ueda, M., Shibasaki, Y., Kamasawa, N., Osumi, M., Imanaka, T., and Tanaka, A., Appl. Microbiol. Biotechnol., 1999, vol. 51, no. 1, pp. 65–70.PubMedCrossRefGoogle Scholar
  52. 52.
    Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, Y., Ueda, M., Satoh, E., Fukuda, H., and Kondo, A., Appl. Environ. Microbiol., 2004, vol. 70, no. 8, pp. 5037–5040.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yamakawa, S., Yamada, R., Tanaka, T., Ogino, C., and Kondo, A., Enzyme Microb. Technol., 2012, vol. 50, nos. 6–7, pp. 343–347.PubMedCrossRefGoogle Scholar
  54. 54.
    Kheldt, G.V., Biokhimiya rastenii (Plant Biochemistry), Moscow: Binom. Laboratoriya znanii, 2011, pp. 21–24.Google Scholar
  55. 55.
    Rabinovich, M.L. and Mel’nik, M.S., Usp. Biol. Khim., 2000, vol. 40, pp. 205–266.Google Scholar
  56. 56.
    Inokuma, K., Hasunuma, T., and Kondo, A., Biotechnol. Biofuels, 2014, vol. 7, p. 8. doi 10.1186/1754-6834-7-8PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Van Zyl, W.H., Lynd, L.R., Haan, R., and McBride, J.E., Adv. Biochem. Eng. Biotechnol., 2007, vol. 108, no. 2, pp. 205–235.PubMedGoogle Scholar
  58. 58.
    Fujita, Y., Ito, J., Ueda, M., Fukuda, H., and Kondo, A., Appl. Environ. Microbiol., 2004, vol. 70, no. 2, pp. 1207–1212.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Murai, T., Ueda, M., Kawaguchi, T., Arai, M., and Tanaka, A., Appl. Environ. Microbiol., 1998, vol. 64, no. 12, pp. 4857–4861.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Fujita, Y., Takahashi, S., Ueda, M., Tanaka, A., Okada, H., Morikawa, Y., Kawaguchi, T., Arai, M., Fukuda, H., and Kondo, A., Appl. Environ. Microbiol., 2002, vol. 68, no. 10, pp. 5136–5141.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Schwarz, W.H., Appl. Microbiol. Biotechnol., 2001, vol. 56, nos. 5–6, pp. 634–649.PubMedCrossRefGoogle Scholar
  62. 62.
    Tsai, S.L., Goyal, G., and Chen, W., Appl. Environ. Microbiol., 2010, vol. 76, no. 22, pp. 7514–7520.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., and Futcher, B., Mol. Biol. Cell, 1998, vol. 9, no. 12, pp. 3273–3297.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Rozanov, A.S., Kotenko, A.V., Akberdin, I.R., and Pel’tek, S.E., Vavilov. Zh. Genet. Selekt., 2014, vol. 18, no. 4/2, pp. 989–998.Google Scholar
  65. 65.
    Katahira, S., Fujita, Y., Mizuike, A., Fukuda, H., and Kondo, A., Appl. Environ. Microbiol., 2004, vol. 70, no. 9, pp. 5407–5414.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Katahira, S., Mizuike, A., Fukuda, H., and Kondo, A., Appl. Microbiol. Biotechnol., 2006, vol. 72, no. 6, pp. 1136–1143.PubMedCrossRefGoogle Scholar
  67. 67.
    Ota, M., Sakuragi, H., Morisaka, H., Kuroda, K., Miyake, H., Tamaru, Y., and Ueda, M., Biotechnol. Prog., 2013, vol. 29, no. 2, pp. 346–351.PubMedCrossRefGoogle Scholar
  68. 68.
    Sun, J., Wen, F., Si, T., Xu, J.H., and Zhao, H., Appl. Environ. Microbiol., 2012, vol. 78, no. 11, pp. 3837–3845.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Srikrishnan, S., Chen, W., and Da Silva, N.A., Biotechnol. Bioeng., 2013, vol. 110, no. 1, pp. 275–285.PubMedCrossRefGoogle Scholar
  70. 70.
    Nakanishi, A., Bae, J.G., Fukai, K., Tokumoto, N., Kuroda, K., Ogawa, J., Nakatani, M., Shimizu, S., and Ueda, M., Appl. Microbiol. Biotechnol., 2012, vol. 94, no. 4, pp. 939–948.PubMedCrossRefGoogle Scholar
  71. 71.
    Andres, I., Gallardo, O., Parascandola, P., Javier Pastor, F.I., and Zueco, J., Biotechnol. Bioeng., 2005, vol. 89, no. 6, pp. 690–697.PubMedCrossRefGoogle Scholar
  72. 72.
    Yang, N., Yu, Z., Jia, D., Xie, Z., Zhang, K., Xia, Z., Lei, L., and Qiao, M., Appl. Microbiol. Biotechnol., 2014, vol. 98, no. 7, pp. 2897–2905.PubMedCrossRefGoogle Scholar
  73. 73.
    Liu, G., Yue, L., Chi, Z., Yu, W., Chi, Z., and Madzak, C., Mar. Biotechnol. (New York), 2009, vol. 11, no. 5, pp. 619–626.CrossRefGoogle Scholar
  74. 74.
    Takagi, T., Yokoi, T., Shibata, T., Morisaka, H., Kuroda, K., and Ueda, M., Appl. Microbiol. Biotechnol., 2016, vol. 100, no. 4, pp. 1723–1732.PubMedCrossRefGoogle Scholar
  75. 75.
    Kaya, M., Ito, J., Kotaka, A., Matsumura, K., Bando, H., Sahara, H., Ogino, C., Shibasaki, S., Kuroda, K., Ueda, M., Kondo, A., and Hata, Y., Appl. Microbiol. Biotechnol., 2008, vol. 79, no. 1, pp. 51–60.PubMedCrossRefGoogle Scholar
  76. 76.
    Fukuda, T., Isogawa, D., Takagi, M., Kato-Murai, M., Kimoto, H., Kusaoke, H., Ueda, M., and Suye, S., Biosci. Biotechnol. Biochem., 2007, vol. 71, no. 11, pp. 2845–2847.PubMedCrossRefGoogle Scholar
  77. 77.
    Abe, H., Shimma, Y., and Jigami, Y., Glycobiology, 2003, vol. 13, no. 2, pp. 87–95.PubMedCrossRefGoogle Scholar
  78. 78.
    Shimma, Y., Saito, F., Oosawa, F., and Jigami, Y., Appl. Environ. Microbiol., 2006, vol. 72, no. 11, pp. 7003–7012.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Lee, G.Y., Jung, J.H., Seo, D.H., Hansin, J., Ha, S.J., Cha, J., Kim, Y.S., and Park, C.S., Bioresour. Technol., 2011, vol. 102, no. 19, pp. 9179–9184.PubMedCrossRefGoogle Scholar
  80. 80.
    Zhang, H.C., Bi, J.Y., Chen, C., Huang, G.L., Qi, Q.S., Xiao, M., and Wang, P.G., Biosci. Biotechnol. Biochem., 2006, vol. 70, no. 9, pp. 2303–2306.PubMedCrossRefGoogle Scholar
  81. 81.
    Jaeger, K.E. and Reetz, M.T., Trends Biotechnol., 1998, vol. 16, no. 9, pp. 396–403.PubMedCrossRefGoogle Scholar
  82. 82.
    Liu, W., Zhao, H., Jia, B., Xu, L., and Yan, Y., Biotechnol. Lett., 2010, vol. 32, no. 2, pp. 255–260.PubMedCrossRefGoogle Scholar
  83. 83.
    Yuzbasheva, E.Y., Yuzbashev, T.V., Perkovskaya, N.I., Mostova, E.B., Vybornaya, T.V., Sukhozhenko, A.V., Toropygin, I.Y., and Sineoky, S.P., Appl. Biochem. Biotechnol., 2015, vol. 175, no. 8, pp. 3888–3900.PubMedCrossRefGoogle Scholar
  84. 84.
    Shiraga, S., Kawakami, M., Ishiguro, M., and Ueda, M., Appl. Environ. Microbiol., 2005, vol. 71, no. 8, pp. 4335–4338.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Washida, M., Takahashi, S., Ueda, M., and Tanaka, A., Appl. Microbiol. Biotechnol., 2001, vol. 56, nos. 5–6, pp. 681–686.PubMedCrossRefGoogle Scholar
  86. 86.
    Kato, M., Fuchimoto, J., Tanino, T., Kondo, A., Fukuda, H., and Ueda, M., Appl. Microbiol. Biotechnol., 2007, vol. 75, no. 3, pp. 549–555.PubMedCrossRefGoogle Scholar
  87. 87.
    Jiang, Z.B., Song, H.T., Gupta, N., Ma, L.X., and Wu, Z.B., Protein Expr. Purif., 2007, vol. 56, no. 1, pp. 35–39.PubMedCrossRefGoogle Scholar
  88. 88.
    Moura, M.V., da Silva, G.P., Machado, A.C., Torres, F.A., Freire, D.M., and Almeida, R.V., PLoS One, 2015, vol. 10, no. 10. e0141454. doi 10.1371/journal. pone.0141454PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Qiu, Z., Tan, H., Zhou, S., and Cao, L., Mol. Biotechnol., 2014, vol. 56, no. 8, pp. 726–730.PubMedCrossRefGoogle Scholar
  90. 90.
    Breinig, F., Diehl, B., Rau, S., Zimmer, C., Schwab, H., and Schmitt, M.J., Appl. Environ. Microbiol., 2006, vol. 72, no. 11, pp. 7140–7147.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Ni, X., Yue, L., Li, J., Chi, Z., Liu, Z., and Madzak, C., Indian J. Biochem. Biophys., 2009, vol. 46, no. 4, pp. 294–298.PubMedGoogle Scholar
  92. 92.
    Yu, X.J., Madzak, C., Li, H.J., Chi, Z.M., and Li, J., Appl. Microbiol. Biotechnol., 2010, vol. 87, no. 2, pp. 669–677.PubMedCrossRefGoogle Scholar
  93. 93.
    Tanaka, T., Masunari, S., Ishii, J., Wakamura, K., Segawa, M., Fukuda, H., and Kondo, A., J. Biotechnol., 2010, vol. 145, no. 1, pp. 79–83.PubMedCrossRefGoogle Scholar
  94. 94.
    Liu, X.Y., Chi, Z., Liu, G.L., Wang, F., Madzak, C., and Chi, Z.M., Metab. Eng., 2010, vol. 12, no. 5, pp. 469–476.PubMedCrossRefGoogle Scholar
  95. 95.
    Li, P.S. and Tao, H.C., Crit. Rev. Microbiol., 2015, vol. 41, no. 2, pp. 140–149.PubMedCrossRefGoogle Scholar
  96. 96.
    Pazirandeh, M., Chrisey, L.A., Mauro, J.M., Campbell, J.R., and Gaber, B.P., Appl. Microbiol. Biotechnol., 1995, vol. 43, no. 6, pp. 1112–1117.PubMedCrossRefGoogle Scholar
  97. 97.
    Kuroda, K. and Ueda, M., Appl. Microbiol. Biotechnol., 2010, vol. 87, no. 1, pp. 53–60.PubMedCrossRefGoogle Scholar
  98. 98.
    Sousa, C., Kotrba, P., Ruml, T., Cebolla, A., and De Lorenzo, V., J. Bacteriol., 1998, vol. 180, no. 9, pp. 2280–2284.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Kuroda, K., Shibasaki, S., Ueda, M., and Tanaka, A., Appl. Microbiol. Biotechnol., 2001, vol. 57, nos. 5–6, pp. 697–701.PubMedCrossRefGoogle Scholar
  100. 100.
    Bae, W., Wu, C.H., Kostal, J., Mulchandani, A., and Chen, W., Appl. Environ. Microbiol., 2003, vol. 69, no. 6, pp. 3176–3180.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kuroda, K., Ueda, M., Shibasaki, S., and Tanaka, A., Appl. Microbiol. Biotechnol., 2002, vol. 59, nos. 2–3, pp. 259–264.PubMedGoogle Scholar
  102. 102.
    Kuroda, K. and Ueda, M., Appl. Microbiol. Biotechnol., 2006, vol. 70, no. 4, pp. 458–463.PubMedCrossRefGoogle Scholar
  103. 103.
    Wei, Q., Zhang, H., Guo, D., and Ma, S., J. Microbiol. Biotechnol., 2016, vol. 26, no. 5, pp. 846–853.PubMedCrossRefGoogle Scholar
  104. 104.
    Kotrba, P. and Ruml, T., Appl. Environ. Microbiol., 2010, vol. 76, no. 8, pp. 2615–2622.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Grunden, A.M., Ray, R.M., Rosentel, J.K., Healy, F.G., and Shanmugam, K.T., J. Bacteriol., 1996, vol. 178, no. 3, pp. 735–744.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Nishitani, T., Shimada, M., Kuroda, K., and Ueda, M., Appl. Microbiol. Biotechnol., 2010, vol. 86, no. 2, pp. 641–648.PubMedCrossRefGoogle Scholar
  107. 107.
    Kuroda, K., Nishitani, T., and Ueda, M., Appl. Microbiol. Biotechnol., 2012, vol. 96, no. 1, pp. 153–159.PubMedCrossRefGoogle Scholar
  108. 108.
    Kuroda, K., Ebisutani, K., Iida, K., Nishitani, T., and Ueda, M., Biomolecules, 2014, vol. 4, no. 2, pp. 390–401.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wegner, S.V., Boyaci, H., Chen, H., Jensen, M.P., and He, C., Angew. Chem., Int. Ed. Engl., 2009, vol. 48, no. 13, pp. 2339–2341.CrossRefGoogle Scholar
  110. 110.
    Ito, R., Kuroda, K., Hashimoto, H., and Ueda, M., AMB Express, 2016, vol. 6, no. 1, p.88.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Takayama, K., Suye, S., Kuroda, K., Ueda, M., Kitaguchi, T., Tsuchiyama, K., Fukuda, T., Chen, W., and Mulchandani, A., Biotechnol. Prog., 2006, vol. 22, no. 4, pp. 939–943.PubMedCrossRefGoogle Scholar
  112. 112.
    Fukuda, T., Tsuchiyama, K., Makishima, H., Takayama, K., Mulchandani, A., Kuroda, K., Ueda, M., and Suye, S., Biotechnol. Lett., 2010, vol. 32, no. 5, pp. 655–659.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Takayama, K., Suye, S., Tanaka, Y., Mulchandani, A., Kuroda, K., and Ueda, M., Anal. Sci., 2011, vol. 27, no. 8, pp. 823–826.PubMedCrossRefGoogle Scholar
  114. 114.
    Fuhacker, M., Scharf, S., and Weber, H., Chemosphere, 2000, vol. 41, no. 5, pp. 751–756.CrossRefGoogle Scholar
  115. 115.
    Yasui, M., Shibasaki, S., Kuroda, K., Ueda, M., Kawada, N., Nishikawa, J., Nishihara, T., and Tanaka, A., Appl. Microbiol. Biotechnol., 2002, vol. 59, nos 2–3, pp. 329–331.PubMedCrossRefGoogle Scholar
  116. 116.
    Nakamura, Y., Shibasaki, S., Ueda, M., Tanaka, A., Fukuda, H., and Kondo, A., Appl. Microbiol. Biotechnol., 2001, vol. 57, no. 4, pp. 500–505.PubMedCrossRefGoogle Scholar
  117. 117.
    Shibasaki, S., Kawabata, A., Ishii, J., Yagi, S., Kadonosono, T., Kato, M., Fukuda, N., Kondo, A., and Ueda, M., Appl. Microbiol. Biotechnol., 2007, vol. 75, no. 4, pp. 821–828.PubMedCrossRefGoogle Scholar
  118. 118.
    Miyashita, H., Karaki, Y., Kikuchi, M., and Fujii, I., Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, no. 11, pp. 5337–5340.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lin, Y., Tsumuraya, T., Wakabayashi, T., Shiraga, S., Fujii, I., Kondo, A., and Ueda, M., Appl. Microbiol. Biotechnol., 2003, vol. 62, nos. 2–3, pp. 226–232.PubMedCrossRefGoogle Scholar
  120. 120.
    Jo, J.H., Im, E.M., Kim, S.H., and Lee, H.H., Biotechnol. Lett., 2011, vol. 33, no. 6, pp. 1113–1120.PubMedCrossRefGoogle Scholar
  121. 121.
    Jacobs, P.P., Ryckaert, S., Geysens, S., De Vusser, K., Callewaert, N., and Contreras, R., Biotechnol. Lett., 2008, vol. 30, no. 12, pp. 2173–2781.PubMedCrossRefGoogle Scholar
  122. 122.
    Nobbs, A.H., Vickerman, M.M., and Jenkinson, H.F., Eukaryot. Cell, 2010, vol. 9, no. 10, pp. 1622–1634.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Wasilenko, J.L., Sarmento, L., Spatz, S., and Pantin-Jackwood, M., Biotechnol. Prog., 2010, vol. 26, no. 2, pp. 542–547.PubMedGoogle Scholar
  124. 124.
    Lei, H., Jin, S., Karlsson, E., Schultz-Cherry, S., and Ye, K., J. Immunol. Res., 2016, vol. 2016, p. 4131324. doi 10.1155/2016/4131324PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Tamaru, Y., Ohtsuka, M., Kato, K., Manabe, S., Kuroda, K., Sanada, M., and Ueda, M., Biotechnol. Prog., 2006, vol. 22, no. 4, pp. 949–953.PubMedCrossRefGoogle Scholar
  126. 126.
    Yue, L., Chi, Z., Wang, L., Liu, J., Madzak, C., Li, J., and Wang, X., J. Microbiol. Methods, 2008, vol. 72, no. 2, pp. 116–123.PubMedCrossRefGoogle Scholar
  127. 127.
    Popovic, M., Prodanovic, R., Ostafe, R., Schillberg, S., Fischer, R., and Gavrovic-Jankulovic, M., Immunol. Res., 2015, vol. 61, no. 3, pp. 230–239.PubMedCrossRefGoogle Scholar
  128. 128.
    Sheehan, J. and Marasco, W.A., Microbiol. Spectr., 2015, vol. 3, no. 1. AID-0028-2014.Google Scholar
  129. 129.
    Van den Beucken, T., Pieters, H., Steukers, M., Van der Vaart, M., Ladner, R.C., Hoogenboom, H.R., and Hufton, S.E., FEBS Lett., 2003, vol. 546, nos. 2–3, pp. 288–294.PubMedCrossRefGoogle Scholar
  130. 130.
    Graff, C.P., Chester, K., Begent, R., and Wittrup, K.D., Protein Eng. Des. Sel., 2004, vol. 17, no. 4, pp. 293–304.PubMedCrossRefGoogle Scholar
  131. 131.
    Razai, A., Garcia-Rodriguez, C., Lou, J., Geren, I.N., Forsyth, C.M., Robles, Y., Tsai, R., Smith, T.J., Smith, L.A., Siegel, R.W., Feldhaus, M., and Marks, J.D., J. Mol. Biol., 2005, vol. 351, no. 1, pp. 158–169.PubMedCrossRefGoogle Scholar
  132. 132.
    Wang, Z., Kim, G.B., Woo, J.H., Liu, Y.Y., Mathias, A., Stavrou, S., and Neville, D.M., Jr., Bioconjug. Chem., 2007, vol. 18, no. 3, pp. 947–955.PubMedCrossRefGoogle Scholar
  133. 133.
    Hara, K., Shigemori, T., Kuroda, K., and Ueda, M., AMB Express, 2012, vol. 2, no. 1, p.63.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Shiraga, S., Ishiguro, M., Fukami, H., Nakao, M., and Ueda, M., Appl. Microbiol. Biotechnol., 2005, vol. 68, no. 6, pp. 779–785.PubMedCrossRefGoogle Scholar
  135. 135.
    Kadonosono, T., Kato, M., and Ueda, M., Appl. Microbiol. Biotechnol., 2007, vol. 75, no. 6, pp. 1353–1360.PubMedCrossRefGoogle Scholar
  136. 136.
    Aoki, W., Yoshino, Y., Morisaka, H., Tsunetomo, K., Koyo, H., Kamiya, S., Kawata, N., Kuroda, K., and Ueda, M., J. Biosci. Bioeng, 2011, vol. 111, no. 1, pp. 16–18.PubMedCrossRefGoogle Scholar
  137. 137.
    Zhang, K., Li, H., Bhuripanyo, K., Zhao, B., Chen, T.F., Zheng, N., and Yin, J., Chembiochem, 2013, vol. 14, no. 4, pp. 426–430.PubMedCrossRefGoogle Scholar
  138. 138.
    Fushimi, T., Miura, N., Shintani, H., Tsunoda, H., Kuroda, K., and Ueda, M., Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 9, pp. 4003–4011.PubMedCrossRefGoogle Scholar
  139. 139.
    Zou, W., Ueda, M., and Tanaka, A., Appl. Microbiol. Biotechnol., 2002, vol. 58, no. 6, pp. 806–812.PubMedCrossRefGoogle Scholar
  140. 140.
    Matsui, K., Kuroda, K., and Ueda, M., Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 1, pp. 105–113.PubMedCrossRefGoogle Scholar
  141. 141.
    Andreu, C. and Del Olmo, M., Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 20, pp. 9055–9069.PubMedCrossRefGoogle Scholar
  142. 142.
    Perpina, C., Vinaixa, J., Andreu, C., and del Olmo, M., Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 2, pp. 775–789.PubMedCrossRefGoogle Scholar
  143. 143.
    Shibasaki, S., Ueda, M., Ye, K., Shimizu, K., Kamasawa, N., Osumi, M., and Tanaka, A., Appl. Microbiol. Biotechnol., 2001, vol. 57, no. 4, pp. 528–533.PubMedCrossRefGoogle Scholar
  144. 144.
    Sambuk, E.V., Fizikova, A.Yu., Savinov, V.A., and Padkina, M.V., Enzyme Res., 2011, vol. 2011, article ID 356093, p. 16. doi 10.4061/2011/356093CrossRefGoogle Scholar
  145. 145.
    Shibasaki, S., Ninomiya, Y., Ueda, M., Iwahashi, M., Katsuragi, T., Tani, Y., Harashima, S., and Tanaka, A., Appl. Microbiol. Biotechnol., 2001, vol. 57, nos. 5–6, pp. 702–707.PubMedGoogle Scholar
  146. 146.
    Shibasaki, S., Tanaka, A., and Ueda, M., Biosens. Bioelectron., 2003, vol. 19, no. 2, pp. 123–130.PubMedCrossRefGoogle Scholar
  147. 147.
    Rajagopala, S.V., Adv. Exp. Med. Biol., 2015, vol. 883, pp. 187–214.PubMedCrossRefGoogle Scholar
  148. 148.
    Li, Y., Biotechnol. Lett., 2011, vol. 33, no. 8, pp. 1487–1499.PubMedCrossRefGoogle Scholar
  149. 149.
    Lim, K.H., Madabhushi, S.R., Mann, J., Neelamegham, S., and Park, S., Biotechnol. Bioeng., 2010, vol. 106, no. 1, pp. 27–41.PubMedGoogle Scholar
  150. 150.
    Kuroda, K., Matsui, K., Higuchi, S., Kotaka, A., Sahara, H., Hata, Y., and Ueda, M., Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 4, pp. 713–719.PubMedCrossRefGoogle Scholar
  151. 151.
    Kotaka, A., Sahara, H., Kuroda, K., Kondo, A., Ueda,M., and Hata, Y., J. Biosci. Bioeng., 2010, vol. 109, no. 5, pp. 442–446.PubMedCrossRefGoogle Scholar
  152. 152.
    Matsuoka, H., Hashimoto, K., Saijo, A., Takada, Y., Kondo, A., Ueda, M., Ooshima, H., Tachibana, T., and Azuma, M., Yeast, 2014, vol. 31, no. 2, pp. 67–76.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations