Applied Biochemistry and Microbiology

, Volume 54, Issue 4, pp 404–409 | Cite as

Expression in Plants of a Recombinant Protein Based on Flagellin Linked to Conservative Fragments of M2 Protein and Hemagglutintin of Influenza Virus

  • E. A. Blokhina
  • E. S. Mardanova
  • L. M. Tsybalova
  • N. V. RavinEmail author


The composition of traditional influenza vaccines require nearly annual updates due to the high variability of the influenza virus. The use of conservative viral antigens, the extracellular domain of the transmembrane protein M2, and fragments of the second subunit of hemagglutinin provides the opportunity to create recombinant broad-spectrum vaccines. Bacterial flagellin was used as a mucosal adjuvant to increase the immunogenicity of these conservative antigens. Recombinant proteins based on flagellin simultaneously containing M2e and a fragment of the hemagglutinin stem region were expressed in Nicotiana benthamiana plants using a self-replicating vector based on the potato virus X genome. Methods for their isolation from plants and purification have been developed. The developed expression system can be used to produce a new candidate influenza vaccine in plants.


influenza recombinant vaccine plant biofactory M2 protein hemagglutinin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M., and Kawaoka, Y., Microbiol. Rev., 1992, vol. 56, pp. 152–179.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Neirynck, S., Deroo, T., Saelens, X., Vanlandschoot, P., Jou, W.M., and Fiers, W., Nat. Med., 1999, vol. 5, no. 10, pp. 1157–1163.CrossRefPubMedGoogle Scholar
  3. 3.
    Fiers, W., De Filette, M., El Bakkouri, K., Schepens, B., Roose, K., Schotsaert, M., Birkett, A., and Saelens, X., Vaccine, 2009, vol. 27, no. 45, pp. 6280–6283.CrossRefPubMedGoogle Scholar
  4. 4.
    Ito, T., Gorman, O.T., Kawaoka, Y., Bean, W.J., and Webster, R.G., J. Virol., 1991, vol. 65, no. 10, pp. 5491–5498.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Feng, J., Zhang, M., Mozdzanowska, K., Zharikova, D., Hoff, H., Wunner, W., Couch, R.B., and Gerhard, W., Virol. J., 2006, vol. 3, p.102.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Iwasaki, A. and Medzhitov, R., Nat. Immunol., 2004, vol. 5, no. 10, pp. 987–995.CrossRefPubMedGoogle Scholar
  7. 7.
    McDonald, W.F., Huleatt, J.W., Foellmer, H.G., Hewitt, D., Tang, J., Desai, P., Price, A., Jacobs, A., Takahashi, V.N., Huang, Y., Nakaar, V., Alexopoulou, L., Fikrig, E., and Powell, T.J., J. Infect. Dis., 2007, vol. 195, no. 11, pp. 1607–1617.CrossRefPubMedGoogle Scholar
  8. 8.
    Huleatt, J.W., Nakaar, V., Desai, P., Huang, Y., Hewitt, D., Jacobs, A., Tang, J., McDonald, W., Song, L., Evans, R.K., Umlauf, S., Tussey, L., and Powell, T.J., Vaccine, 2008, vol. 26, no. 2, pp. 201–214.CrossRefPubMedGoogle Scholar
  9. 9.
    Stepanova, L., Kotlyarov, R., Kovaleva, A., Potapchuk, M., Korotkov, A., Sergeeva, M., Kasianenko, M.A., Kuprianov, V.V., Ravin, N.V., Tsybalova, L.M., Skryabin, K.G., and Kiselev, O.I., PLoS One, 2015, vol. 10, no. 3. e0119520.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kusnadi, A.R., Nikolov, Z.L., and Howard, J.A., Biotechnol. Bioeng., 1997, vol. 56, no. 5, pp. 473–484.CrossRefPubMedGoogle Scholar
  11. 11.
    Gleba, Y., Klimyuk, V., and Marillonnet, S., Curr. Opin. Biotechnol., 2007, vol. 18, no. 2, pp. 134–141.CrossRefPubMedGoogle Scholar
  12. 12.
    Kapila, J., De Rycke, R., van Montagu, M., and Angenon, G., Plant Sci., 1997, vol. 122, no. 1, pp. 101–108.CrossRefGoogle Scholar
  13. 13.
    Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., and Gleba, Y., Nat. Biotechnol., 2005, vol. 23, no. 6, pp. 718–723.CrossRefPubMedGoogle Scholar
  14. 14.
    Thuenemann, E.C., Lenzi, P., Love, A.J., Taliansky, M., Becares, M., Zuniga, S., Enjuanes, L., Zahmanova, G.G., Minkov, I.N., Matic, S., Noris, E., Meyers, A., Hattingh, A., Rybicki, E.P., Kiselev, O.I., Ravin, N.V., Eldarov, M.A., Skryabin, K.G., and Lomonossoff, G.P., Curr. Pharm. Des., 2013, vol. 19, no. 31, pp. 5564–5573.CrossRefPubMedGoogle Scholar
  15. 15.
    Lomonossoff, G.P. and D’Aoust, M.A., Science, 2016, vol. 353, no. 6305, pp. 1237–1240.CrossRefPubMedGoogle Scholar
  16. 16.
    D'Aoust, M.A., Lavoie, P.O., Couture, M.M., Trepanier, S., Guay, J.M., Dargis, M., Mongrand, S., Landry, N., Ward, B.J., and Vezina, L.P., Plant Biotechnol. J., 2008, vol. 6, no. 9, pp. 930–940.CrossRefPubMedGoogle Scholar
  17. 17.
    Shoji, Y., Jones, R.M., Mett, V., Chichester, J.A., Musiychuk, K., Sun, X., Tumpey, T.M., Green, B.J., Shamloul, M., Norikane, J., Bi, H., Hartman, C.E., Bottone, C., Stewart, M., Streatfield, S.J., and Yusibov, V., Hum. Vaccin. Immunother., 2013, vol. 9, no. 3, pp. 533–560.CrossRefGoogle Scholar
  18. 18.
    Ravin, N.V., Kotlyarov, R.Yu., Mardanova, E.S., Kuprianov, V.V., Migunov, A.I., Stepanova, L.A., Tsybalova, L.M., Kiselev, O.I., and Skryabin, K.G., Biokhimiya, 2012, vol. 77, no. 1, pp. 43–52.Google Scholar
  19. 19.
    Petukhova, N.V., Gasanova, T.V., Stepanova, L.A., Rusova, O.A., Potapchuk, M.V., Korotkov, A.V., Skurat, E.V., Tsybalova, L.M., Kiselev, O.I., Ivanov, P.A., and Atabekov, J.G., Curr. Pharm. Des, 2013, vol. 19, no. 31, pp. 5587–5600.CrossRefPubMedGoogle Scholar
  20. 20.
    Mardanova, E.S., Kotlyarov, R.Y., Kuprianov, V.V., Stepanova, L.A., Tsybalova, L.M., Lomonosoff, G.P., and Ravin, N.V., BMC Biotechnology, 2015, vol. 15, p.42.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang, T.T., Tan, G.S., Hai, R., Pica, N., Ngai, L., Ekiert, D.C., Wilson, I.A., García-Sastre, A., Moran, T.M., and Palese, P., Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 44, pp. 18979–18984.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gamblin, S.J. and Skehel, J.J., J. Biol. Chem., 2010, vol. 285, no. 37, pp. 28403–28409.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nachbagauer, R. and Krammer, F., Clin. Microbiol. Infect., 2017, vol. 23, no. 4, pp. 222–228.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang, H., Wang, L., Compans, R.W., and Wang, B.Z., Viruses, 2014, vol. 6, no. 5, pp. 1974–1991.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Stepanova, L.A., Sergeeva, M.V., Shuklina, M.A., Shaldzhyan, A.A., Potapchuk, M.V., Korotkov, A.V., and Tsybalova, L.M., Acta Naturae, 2016, vol. 8, no. 2, pp. 129–140.Google Scholar
  26. 26.
    Guo, Y., He, L., Song, N., Li, P., Sun, S., Zhao, G., Tai, W., Jiang, S., Du, L., and Zhou, Y., Microbes Infect., 2017, vol. 19, no. 12, pp. 641–647.CrossRefPubMedGoogle Scholar
  27. 27.
    Mardanova, E.S., Blokhina, E.A., Tsybalova, L.M., Peyret, H., Lomonossoff, G.P., and Ravin, N.V., Front. Plant Sci., 2017, vol. 8, p.247.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    De Filette, M., Fiers, W., Martens, W., Birkett, A., Ramne, A., Löwenadler, B., Lycke, N., Jou, W.M., and Saelens, X., Vaccine, 2006, vol. 24, nos. 44–46, pp. 6597–6601.CrossRefPubMedGoogle Scholar
  29. 29.
    Kotlyarov, R.Yu., Kupriyanov, V.V., Migunov, A.I., Stepanova, L.A., Tsybalova, L.M., Kiselev, O.I., Ravin, N.V., and Skryabin, K.G., Acta Naturae, 2010, vol. 2, no. 2, pp. 75–80.Google Scholar
  30. 30.
    De Filette, M., Min Jou, W., Birkett, A., Lyons, K., Schultz, B., Tonkyro, A., Resch, S., and Fiers, W., Virology, 2005, vol. 337, no. 1, pp. 149–161.CrossRefPubMedGoogle Scholar
  31. 31.
    Ravin, N.V., Blokhina, E.A., Kuprianov, V.V., Stepanova, L.A., Shaldjan, A.A., Kovaleva, A.A., Tsybalova, L.M., and Skryabin, K.G., Vaccine, 2015, vol. 33, no. 29, pp. 3392–3397.CrossRefPubMedGoogle Scholar
  32. 32.
    Nemchinov, L.G. and Natilla, A., Protein Expr. Purif., 2007, vol. 56, no. 2, pp. 153–159.CrossRefPubMedGoogle Scholar
  33. 33.
    Matić, S., Rinaldi, R., Masenga, V., and Noris, E., BMC Biotechnol., 2011, vol. 11, p. 106.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. A. Blokhina
    • 1
  • E. S. Mardanova
    • 1
  • L. M. Tsybalova
    • 2
  • N. V. Ravin
    • 1
    Email author
  1. 1.Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology”Russian Academy of SciencesMoscowRussia
  2. 2.Research Institute of InfluenzaSt. PetersburgRussia

Personalised recommendations