Advertisement

Mathematical Notes

, Volume 106, Issue 3–4, pp 488–500 | Cite as

Embedding Theorems between Variable-Exponent Morrey Spaces

  • R. A. BandaliyevEmail author
  • V. S. GuliyevEmail author
Article
  • 10 Downloads

Abstract

In this paper, we study various embedding theorems on variable-exponent Morrey spaces. In particular, we found a criterion characterizing embedding between variable-exponent Morrey spaces.

Kewywords

variable-exponent Lebesgue spaces variable-exponent Morrey spaces equivalent norms embedding theorems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This work was supported in part by the First Azerbaijan-Russia Joint Grant Competition (agreement no. EIF-BGM-4-RFTF-1/2017-21 /01/1) and by the Ministry of Education and Science of the Russian Federation (agreement no. 02.a03.21.0008).

References

  1. 1.
    C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations,” Trans. Amer. Math. Soc. 43, 126–166 (1938).MathSciNetzbMATHGoogle Scholar
  2. 2.
    D. R. Adams, “Morrey Spaces,” in Lecture Notes in Appl. and Numer. Harm. Anal., (Birkhauser, Basel, 2015).Google Scholar
  3. 3.
    A. Almeida., J. J. Hasanov, and S. Samko., “Maximal and potential operators in variable exponent Lebesgue spaces,” Georgian Math. J. 1 (2), 195–208 (2008).zbMATHGoogle Scholar
  4. 4.
    Y. Mizuta and T. Shimomura., “Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent,” J. Math. Soc. Japan 1 (2), 583–602 (2008).MathSciNetzbMATHGoogle Scholar
  5. 5.
    V. Kokilashvili and A. Meskhi., “Boundedness of maximal and singular operators in Morrey spaces with variable exponent,” Arm. J. Math. 1(1), 18–28 (2008).MathSciNetzbMATHGoogle Scholar
  6. 6.
    X. Fan., “Variable-exponent Morrey and Campanato spaces,” Nonlinear Anal. 1 (11), 4148–4161 (2010).MathSciNetzbMATHGoogle Scholar
  7. 7.
    V. S. Guliyev, J. J. Hasanov, and S. G. Samko, “Boundedness of the maximal, potential and singular operators in the generalized variable-exponent Morrey spaces,” Math. Scand. 107, 285–304 (2010).MathSciNetzbMATHGoogle Scholar
  8. 8.
    V. S. Guliyev, J. J. Hasanov, and S. G. Samko, “Maximal, potential and singular operators in the local complementary variable-exponent Morrey type spaces,” J. Math. Anal. Appl. 1 (1), 72–84 (2013).MathSciNetzbMATHGoogle Scholar
  9. 9.
    VS. Guliyev and S. G. Samko, “Maximal, potential and singular operators in the generalized variable-exponent Morrey spaces on unbounded sets,” J. Math. Sci. (N. Y.) 1 (2), 228–248 (2013).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Y. Mizuta and T. Shimomura., “Weighted Morrey spaces of variable exponent and Riesz potentials,” Math. Nachr. 288 (8-9), 583–602 (2015).MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. Meskhi., H. Rafeiro., and M. A. Zaighum, “Interpolation on variable Morrey spaces defined on quasi-metric measure spaces,” J. Funct. Anal. 1 (10), 3946–3961 (2016).MathSciNetzbMATHGoogle Scholar
  12. 12.
    W. Orlicz., “Uberkonjugierte exponentenfolgen,” Studia Math. 3, 200–212(1931).zbMATHGoogle Scholar
  13. 13.
    H. Nakano., Modulared Semi-Ordered Linear Spaces (Maruzen, Tokyo, 1950).zbMATHGoogle Scholar
  14. 14.
    J. Musielak and W. Orlicz., “On modular spaces,” Studia Math. 18, 49–65 (1959).MathSciNetzbMATHGoogle Scholar
  15. 15.
    J. Musielak., “Orlicz Spaces and Modular Spaces,” in Lecture Notes in Math. (Springer-Verlag, Berlin, 1983), Vol.1034.Google Scholar
  16. 16.
    I. I. Sharapudinov, “Topology of the space C pt) ([0,1])},” Mat. Zametki 1 (4), 613–632 (1979) [Math. Notes} 1 (4), 796–806 (1979)].Google Scholar
  17. 17.
    O. Kovacˇik and J. Rakosnik., “On spaces L p(x) and W k, (x),” Czechoslovak Math. J. 1 (41), 592–618 (1991).Google Scholar
  18. 18.
    S. Samko., “Convolution type operators inLp(x),” Integral Transform. Spec. Funct. 7(1-2), 123–144(1998).MathSciNetzbMATHGoogle Scholar
  19. 19.
    L. Diening., “Maximal function on generalized Lebesgue spaces L p,” Math. Inequal. Appl. 1 (2), 245–253 (2004).zbMATHGoogle Scholar
  20. 20.
    D. Cruz-Uribe, A. Fiorenza., and C. Neugebauer., “The maximal function on variable Lp spaces,” Ann. Acad. Sci. Fenn. Math. 28, 223–238 (2003).MathSciNetzbMATHGoogle Scholar
  21. 21.
    A. Nekvinda., “Hardy-Littlewood maximal operator on L p(x)(Mn),” Math. Inequal. Appl. 1 (2), 255–266 (2004).MathSciNetzbMATHGoogle Scholar
  22. 22.
    V. Kokilashvili and S. Samko., “Weighted boundedness of the maximal, singular and potential operators in variable-exponent spaces,” in Analytic Methods of Analysis and Differential Equations, Proc. Minsk 139–164 (2006) (Cambridge Scientific Publishers, Cambridge, 2008).Google Scholar
  23. 23.
    S. Samko., “On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators,” Integral Transform. Spec. Funct. 16(5-6), 461–482 (2005).MathSciNetzbMATHGoogle Scholar
  24. 24.
    L. Diening., P. Hasto¨, and A. Nekvinda., “Open problems in variable-exponent Lebesgue and Sobolev spaces,” in Function Spaces, Differential Operators and Nonlinear Analysis, Proc. Conference Held in Milovy, Bohemian-Moravian Uplands, Czech Acad. Sci., Milovy (Czech Republic, 2005) 38–58.Google Scholar
  25. 25.
    V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory,” Izv. Akad. Nauk SSSR Ser. Mat. 50 (4), 675–710 (1986) [Math. USSR-Izv. 29 (1), 33–66 (1986)].MathSciNetGoogle Scholar
  26. 26.
    M. Ruzˇicka, “Electrorheological Fluids: Modeling and Mathematical Theory,” in Lecture Notes in Math. (Springer-Verlag, Berlin, 2000), Vol. 1748.Google Scholar
  27. 27.
    L. Diening., P. Harjulehto., P. Hasto., and M. Ruzˇicka, “Lebesgue and Sobolev Spaces with Variable Exponents,” in Lecture Notes in Math. Springer-Verlag, Berlin, 2011), Vol. 2017.Google Scholar
  28. 28.
    A. Almeida and S. Samko., “Embeddings of local generalized Morrey spaces between weighted Lebesgue spaces,” Nonlinear Anal. 164, 67–76 (2017).MathSciNetzbMATHGoogle Scholar
  29. 29.
    A. Almeida and S. Samko., “Approximation in Morrey spaces,” J. Funct. Anal. 1 (6), 2392–2411 (2017).MathSciNetzbMATHGoogle Scholar
  30. 30.
    M. Ragusa and A. Scapelatto., “Mixed Morrey spaces and their applications to partial differential equations,” Nonlinear Anal. 151, 51–65(2017).MathSciNetzbMATHGoogle Scholar
  31. 31.
    I. I. Sharapudinov, “On the basis property of the Haar system in the space L(t)([0,1]) and the principle of localization in the mean,” Mat. Sb. 1 (2), 275–283 (1986) [Math. USSR-Sb. 58, 279–287 (1987)].MathSciNetGoogle Scholar
  32. 32.
    A. Nekvinda., “Embeddings between discrete weighted Lebesgue spaces with variable exponent,” Math. Inequal. Appl. 10(1), 255–265 (2007).MathSciNetzbMATHGoogle Scholar
  33. 33.
    R. A. Bandaliev, “Embedding between variable-exponent Lebesgue spaces with measures,” Azerb. J. Math. 2(1), 111–117 (2012).MathSciNetzbMATHGoogle Scholar
  34. 34.
    O¨. Kulak, “The inclusion theorems for variable-exponent Lorentz spaces,” Turkish J. Math. 1 (3), 605–619 (2016).MathSciNetzbMATHGoogle Scholar
  35. 35.
    R. A. Bandaliev, “On an inequality in Lebesgue space with mixed norm and with variable summability exponent,” Mat. Zametki 1 (3), 323–333 (2008) [Math. Notes 1 (3), 303–313 (2008)].MathSciNetzbMATHGoogle Scholar
  36. 36.
    D. Cruz-Uribe and A. Fiorenza., Variable Lebesgue Spaces. Foundations and Harmonic Analysis (Birkhauser, Basel, 2013).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Mathematics and MechanicsNational Academy of Sciences of AzerbaijanBakuAzerbaijan
  2. 2.Nikol’skii Mathematical Institute of RUDN UniversityMoscowRussia
  3. 3.Department of MathematicsDumlupinar UniversityKutahyaTurkey

Personalised recommendations