Mathematical Notes

, Volume 105, Issue 1–2, pp 285–290 | Cite as

Solution Area for a Class of Linear Differential Equations with Hukuhara Derivative

  • V. I. Slyn’koEmail author


A formula for the solution area for a class of linear differential equations with Hukuhara derivative is obtained.


Hukuhara derivative Minkowski mixed-area functional solution area comparison system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Lyapunov, General Problem of Stability of Motion (Gostekhizdat, Moscow–Leningrad, 1950) [in Russian].zbMATHGoogle Scholar
  2. 2.
    V. Lakshmikantham, T. G. Bhaskar, and J. Vasundhara Devi, Theory of SetDifferential Equations inMetric Spaces (Cambridge Sci. Publ., Cambridge, 2006).Google Scholar
  3. 3.
    A. A. Tolstonogov, Generalized Differential Equations in a Banach Space (Nauka, Novosibirsk, 1986) [in Russian].zbMATHGoogle Scholar
  4. 4.
    V. Blaschke, Kreis und Kugel (W. de Gruyter, Berlin, 1956; Nauka, Moscow, 1967).zbMATHGoogle Scholar
  5. 5.
    A. D. Aleksandrov, “In the theory ofmixed volumes of convex bodies. I. Extension of some notions of the theory of convex bodies,” Mat. Sb. 2 (44) (5), 947–972 (1937).Google Scholar
  6. 6.
    V. I. Slyn’ko, “Stability in terms of two measures for set difference equations in space conv(R3),” Appl. Anal. 96 (2), 278–292 (2015).CrossRefzbMATHGoogle Scholar
  7. 7.
    E. V. Ocheretnyuk and V. I. Slyn’ko, “Estimates of the volume of solutions of differential equations with Hukuhara derivative,” Mat. Zametki 97 (3), 440–447 (2015) [Math. Notes 97 (3), 431–437 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    V. I. Slyn’ko, “The stability of fixed points of discrete dynamical systems in the space convRn,” Funktsional. Anal. Prilozhen. 50 (2), 94–96 (2016) [Functional Anal. Appl. 50 (2), 163–165 (2016)].MathSciNetCrossRefGoogle Scholar
  9. 9.
    E. V. Ocheretnyuk and V. I. Slyn’ko, “Method of comparison for differential equations withHukuhara derivative in the space conv(R2),” J. Math. Sci. (N. Y. ) 206 (1), 69–83 (2015).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Timoshenko Institute of Mechanics of National Academy of Sciences of UkraineKievUkraine

Personalised recommendations