Advertisement

Mathematical Notes

, Volume 105, Issue 1–2, pp 258–264 | Cite as

On Nonergodic Uniform Lotka–Volterra Operators

  • F. M. MukhamedovEmail author
  • U. U. JamilovEmail author
  • A. T. PirnapasovEmail author
Article
  • 3 Downloads

Abstract

In this paper, we introduce uniform Lotka–Volterra operators and construct Lyapunov functions for them. We establish that the ergodic averages associated with operators of such kind diverge.

Keywords

ergodic hypothesis Lotka-Volterra operator tournament divergent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Akin and V. Losert, “Evolutionary dynamics of zero–sum games,” J. Math. Biol. 20, 231–258 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    S. N. Bernstein, “The solution of a mathematical problem concerning the theory of heredity,” Ucheniye–Zapiski N.–I. Kaf. Ukr. Otd. Mat. 1, 83–115 (1924)(Russian).Google Scholar
  3. 3.
    N. N. Ganikhodzhaev, R. N. Ganikhodjaev and U. U. Jamilov, “Quadratic stochastic operators and zero–sum game dynamics,” Ergod. Th. and Dynam. Sys. 35, 1143–1473 (2015).MathSciNetGoogle Scholar
  4. 4.
    R. Ganikhodzhaev, F. Mukhamedov and U. Rozikov, “Quadratic stochastic operators and processes: Results and open problems,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14, 279–335 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    F. Harary, Graph theory (Addison–Wesley Publishing Co.,Reading, Mass.–Menlo Park, Calif.–London, 1969. )CrossRefzbMATHGoogle Scholar
  6. 6.
    U. U. Jamilov and M. Ladra, “Non–ergodicity of uniform quadratic stochastic operators,” Qual. Theory Dyn. Syst. 15, 257–271 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations (Cambridge Tracts in Math. 182, Cambridge Univ. Press, Cambridge, 2010. )CrossRefzbMATHGoogle Scholar
  8. 8.
    A. J. Lotka, “Undamped oscillations derived from the law of mass action,” J. Amer. Chem. Soc. 42, 1595–1599 (1920).CrossRefGoogle Scholar
  9. 9.
    F. Mukhamedov and N. Ganikhodjaev, Quantum Quadratic Operators and Processes (Springer, Berlin, 2015. )CrossRefzbMATHGoogle Scholar
  10. 10.
    F. Mukhamedov and M. Saburov, “Stability and monotonicity of Lotka–Volterra type operators,” Qual. Theory Dyn. Syst. 16, 249–267 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Saburov, “A class of nonergodic Lotka–Volterra operators,” Math. Notes 97, 759–763(2015).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    V. ˆVolterra, “Lois de fluctuation de la population de plusieurs espèces coexistant dans le meme milieu,” Association Franc. Lyon 1926, 96–98(1926).Google Scholar
  13. 13.
    M. I. Zakharevich, “On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex,” Russian Math. Surveys 33, 265–268 (1978).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mathematical Sciences, College of ScienceUnited Arab Emirates UniversityAl Ain, Abu DhabiUAE
  2. 2.Romanovskiy Institute of MathematicsAcademy of ScienceTashkentUzbekistan
  3. 3.Faculty of MathematicsRuhr University BochumBochumGermany

Personalised recommendations