Advertisement

Mathematical Notes

, Volume 105, Issue 1–2, pp 132–136 | Cite as

A Combinatorial Invariant of Morse–Smale Diffeomorphisms without Heteroclinic Intersections on the Sphere Sn, n ≥ 4

  • V. Z. GrinesEmail author
  • E. Ya. GurevichEmail author
  • O. V. PochinkaEmail author
Short Communications
  • 2 Downloads

Keywords

Morse–Smale diffeomorphism topological conjugacy topological classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Z. Grines, T. V. Medvedev, and O. V. Pochinka, Dynamical Systems on 2–and 3–Manifolds, in Developments in Math. (Springer International Publ., 2016), Vol. 46.zbMATHGoogle Scholar
  2. 2.
    V. Z. Grines and O. V. Pochinka, Uspekhi Mat. Nauk 68 (1 (409)), 129 (2013) [Russian Math. Surveys 68 (1), 117 (2013)].Google Scholar
  3. 3.
    V. Z. Grines, E. Ya. Gurevich, and V. S. Medvedev, Trudy Mat. Inst. Steklov 270, 62 (2010) [Proc. Steklov Inst. Math. 270, 57 (2010)].Google Scholar
  4. 4.
    V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, and O. V. Pochinka, Mat. Zametki 102 (4), 613 (2017) [Math. Notes 102 (4), 569 (2017)].CrossRefGoogle Scholar
  5. 5.
    V. Z. Grines, E. A. Gurevich, and O. V. Pochinka, J. Math. Sci. (N. Y. ) 208 (1), 81 (2015).MathSciNetCrossRefGoogle Scholar
  6. 6.
    J. C. Cantrell, Proc. Amer. Math. Soc. 15 (4), 574 (1964).MathSciNetGoogle Scholar
  7. 7.
    M. Brown, Ann. ofMath. (2) 75 (2), 331 (1962).CrossRefGoogle Scholar
  8. 8.
    V. Z. Grines, E. Ya. Gurevich, and O. V. Pochinka, Uspekhi Mat. Nauk 71 (6 (432)), 163 (2016) [Russian Math. Surveys 71 (6 (432)), 1146 (2016)].Google Scholar
  9. 9.
    V. Grines, E. Gurevich, and O. Pochinka, On Embedding of Multidimensional Morse–Smale Diffeomorphisms in Topological Flows, arXiv: 1806. 03468 (2018).zbMATHGoogle Scholar
  10. 10.
    M. Hirsch, Differential Topology (Springer–Verlag, New York, 1976).CrossRefzbMATHGoogle Scholar
  11. 11.
    J. Palis and W. de Melo, Geometric Theory of Dynamical Systems: An Introduction (Springer–Verlag, New York, 1982).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National Research University Higher School of Economics in Nizhny NovgorodNizhnii NovgorodRussia

Personalised recommendations