Mathematical Notes

, Volume 105, Issue 1–2, pp 104–114 | Cite as

On the Automorphism Group of an Antipodal Tight Graph of Diameter 4 with Parameters (5, 7, r)

  • L. Yu. TsiovkinaEmail author


It is proved that the automorphism group of every AT4(5, 7, r)-graph acts intransitively on the set of its arcs. Moreover, it is established that the automorphism group of any strongly regular graph with parameters (329, 40, 3, 5) acts intransitively on the set of its vertices.


distance-regular graph antipodal tight graph vertex-transitive graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Yu. Tsiovkina, “Two new infinite families of arc–transitive antipodal distance–regular graphs of diameter three with λ = μ related to groups Sz(q) and 2G2(q),” J. Algebraic Combin. 41 (4), 1079–1087 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    L. Yu. Tsiovkina, “Arc–transitive antipodal distance–regular covers of complete graphs related to SU3(q),” DiscreteMath. 340 (2), 63–71 (2017).MathSciNetzbMATHGoogle Scholar
  3. 3.
    A. Jurišić and J. Koolen, “Krein parameters and antipodal tight graphs with diameter 3 and 4,” DiscreteMath. 244, 181–202 (2002).MathSciNetzbMATHGoogle Scholar
  4. 4.
    A. Jurišić and J. Koolen, “Classification of the family AT4(qs, q, q) of antipodal tight graphs,” J. Combin. Theory. Ser. A 118 (3), 842–852 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. A. Makhnev and D. V. Paduchikh, “Small AT4–graphs and strongly regular subgraphs corresponding to them,” in Tr. Inst. Mat. Mekh. (Ekaterinburg) 22 (1), 220–230 (2016) [Proc. Steklov Inst. Math. 296, Suppl. 1, S164–S174 (2017)].MathSciNetGoogle Scholar
  6. 6.
    A. E. Brouwer, Parameters of Strongly Regular Graphs,
  7. 7.
    A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance–Regular Graphs (Springer–Verlag, Berlin, 1989).CrossRefzbMATHGoogle Scholar
  8. 8.
    P. J. Cameron, Permutation Groups (Cambridge Univ. Press, Cambridge, 1999).CrossRefzbMATHGoogle Scholar
  9. 9.
    M. Behbahani and C. Lam, “Strongly regular graphs with non–trivial automorphisms,” DiscreteMath. 311, 132–144 (2011).MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum,” Sib. Elektron. Matem. Izv. 6, 1–12 (2009).MathSciNetzbMATHGoogle Scholar
  11. 11.
    R. Guralnick, B. Kunyavskiĭ, E. Plotkin, and A. Shalev, “Thompson–like characterizations of the solvable radical,” J. Algebra 300, 363–375 (2006).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Krasovskii Institute of Mathematics and MechanicsUral Branch of Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations