Advertisement

Mathematical Notes

, Volume 104, Issue 5–6, pp 933–938 | Cite as

Semiclassical Asymptotics of the Spectrum of the Subcritical Harper Operator

  • A. A. FedotovEmail author
  • E. V. Shchetka
Short Communications
  • 4 Downloads

Keywords

Harper operator spectrum semiclassics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Wilkinson, J. Phys. A 20, 4337 (1987).MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Avila and S. Jitomirskaya, Ann. of Math. (2) 170 (1), 303 (2009).MathSciNetCrossRefGoogle Scholar
  3. 3.
    B. Helffer, P. Kerdelhué, and J. Sjöstrand, Mém. Soc. Math. France (N. S.) 43, 1 (1988).Google Scholar
  4. 4.
    A. A. Fedotov, Algebra Anal. [St. PetersburgMath. J.] 25 (2), 203 (2013) [St. PetersburgMath. J. 25 (2), 303 (2014)].Google Scholar
  5. 5.
    J. Brüning, S. Yu. Dobrokhotov, and K. V. Pankrashkin, Russ. J.Math. Phys. 9 (1), 14 (2002).MathSciNetGoogle Scholar
  6. 6.
    A. A. Fedotov, “Monodromy matrix for the almost Mathieu equation with a small coupling constant,” Funktsional. Anal. Prilozhen. (in press).Google Scholar
  7. 7.
    V. Buslaev and A. Fedotov, “On difference equations with periodic coefficients,” Adv. Theor. Math. Phys. 5 (6), 1105–1168 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    V. S. Buslaev and A. A. Fedotov, Algebra Anal. 6 (3), 59 (1994) [St. PetersburgMath. J. 6 (3), 495 (1995)].Google Scholar
  9. 9.
    A. A. Fedotov and E. V. Shchetka, Algebra Anal. 29 (2), 193 (2017) [St. Petersburg Math. J. 29 (2), 363 (2018)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Chebyshev Research Laboratory, Department of Mathematics and MechanicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations