Advertisement

Mathematical Notes

, Volume 104, Issue 5–6, pp 823–832 | Cite as

Bilinear Hardy–Steklov Operators

  • P. Jain
  • S. Kanjilal
  • V. D. Stepanov
  • E. P. Ushakova
Article
  • 5 Downloads

Abstract

The weighted inequality in Lebesgue norms with bilinear Hardy–Steklov operators is characterized.

Keywords

weighted Lebesgue space Hardy inequality bilinear operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Aguilar Cañestro, P. Ortega Salvador, and C. Ramírez Torreblanca, “Weighted bilinear Hardy inequalities,” J. Math. Anal. Appl. 387, 320–334 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. Cwikel and R. Kerman, “Positive multilinear operators acting on weighted L p spaces,” J. Funct. Anal. 106, 130–144 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    L. Grafakos and R. H. Torres, “A multilinear Schur test and multiplier operators,” J. Funct. Anal. 187, 1–24 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M. Krepela, “Iterating bilinear Hardy inequalities,” Proc. Edinburgh Math. Soc. 60, 955–971 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    D. V. Prokhorov, “On a class of weighted inequalities containing quasilinear operators,” Tr. Mat. Inst. Steklova 293, 280–295 (2016) [Proc. Steklov Inst.Math. 293 (1), 272–287 (2016)].MathSciNetGoogle Scholar
  6. 6.
    M. Krepela, “Bilinear weighted Hardy inequality for nonincreasing functions,” Publ. Mat. 61, 3–50 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    V. D. Stepanov and G. E. Shambilova, “Reduction of weighted bilinier inequalities with integration operators on the cone of nondecreasing functions,” Sibirsk. Mat. Zh. 59 (3), 639–658 (2018) [Siber. Math. J. 59, 505–522 (2018)].zbMATHGoogle Scholar
  8. 8.
    V. D. Stepanov and G. E. Shambilova, “Iterated integral operators on the cone of monotone functions,” Mat. Zametki 104 (3), 454–466 (2018) [Math. Notes 104 (3), 443–453 (2018)].MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. D. Stepanov and E. P. Ushakova, “On integral operators with variable limits of integration, Tr. Mat. Inst. Steklova 232, 298–317 (2001) [Proc. Steklov Inst.Math. 232 (1), 290–309 (2001)].MathSciNetzbMATHGoogle Scholar
  10. 10.
    V.D. Stepanov and E. P. Ushakova, “Hardy operatorwith variable limits onmonotone functions,” J. Function Spaces Appl. 1, 1–15 (2003).MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. G. Nasyrova and E. P. Ushakova, “Hardy–Steklov operators and Sobolev–type embedding inequalities,” Tr.Mat. Inst. Steklova 293, 236–262 (2016) [Proc. Steklov Inst.Math. 293 (1), 228–254 (2016)].MathSciNetzbMATHGoogle Scholar
  12. 12.
    D. V. Prokhorov, V. D. Stepanov, and E. P. Ushakova, “Hardy–Steklov Integral Operators: Part I,” Sovrem. Probl. Mat. 22, 3–185 (2016) [Proc. Steklov Inst. Math. 300 (Suppl. 2), S1–S112 (2018)].CrossRefGoogle Scholar
  13. 13.
    V. D. Stepanov and E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications,” Math. Inequal. Appl. 13, 449–510 (2010).MathSciNetzbMATHGoogle Scholar
  14. 14.
    E. P. Ushakova, “On boundedness and compactness of a certain class of kernel operators,” J. Funct. Spaces Appl. 9, 67–107 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    V. D. Stepanov and E. P. Ushakova, “On boundedness of a certain class of Hardy–Steklov type operators in Lebesgue spaces,” Banach J.Math. Anal. 4, 28–52 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    E. P. Ushakova, “Alternative boundedness characteristics for the Hardy–Steklov operator,” Eurasian Math. J. 8, 74–96 (2017).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. Jain
    • 1
  • S. Kanjilal
    • 1
  • V. D. Stepanov
    • 2
  • E. P. Ushakova
    • 3
  1. 1.South Asian UniversityNew DelhiIndia
  2. 2.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  3. 3.Computing Center of Far-Eastern Branch of Russian Academy of SciencesKhabarovskRussia

Personalised recommendations