Mathematical Notes

, Volume 104, Issue 5–6, pp 773–777 | Cite as

The Sub-Riemannian Curvature of Curves in the Borel Subgroup of the Group SL(2,ℝ)

  • M. V. TryamkinEmail author
Short Communications


special linear group sub-Riemannian structure Riemann approximation sub-Riemannian curvature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Agrachev, D. Barilari, and L. Rizzi, Curvature: A Variational Approach,, 2015.zbMATHGoogle Scholar
  2. 2.
    M. Gromov, Carnot-Carathéodory Spaces Seen From Within (Birkhäuser Verlag, Basel, 1996).CrossRefzbMATHGoogle Scholar
  3. 3.
    S. D. Pauls, Geom. Dedicata 104, 201 (2004).MathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Capogna, D. Danielli, S. D. Pauls, and J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem (Birkhäuser Verlag, Basel, 2007).zbMATHGoogle Scholar
  5. 5.
    G. Citti and M. Manfredini, Potential Anal. 25 (2), 147 (2006).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Z. M. Balogh, J. T. Tyson, and E. Vecchi, Math. Z. 287 (1-2), 1 (2017).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Agrachev and D. Barilari, J. Dynam. Control Systems 18 (1), 21 (2012).CrossRefGoogle Scholar
  8. 8.
    J. M. Lee, Riemannian Manifolds: An Introduction to Curvature (Springer-Verlag, New York, 1997).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations