Advertisement

Mathematical Notes

, Volume 104, Issue 5–6, pp 655–665 | Cite as

On Exponential Summability of Rectangular Partial Sums of Double Trigonometric Fourier Series

  • U. GoginavaEmail author
  • G. Karagulyan
Article
  • 4 Downloads

Abstract

In this paper, we study the a.e. exponential strong summability problem for the rectangular partial sums of double trigonometric Fourier series of functions in L logL.

Keywords

double Fourier series strong summability exponential means 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Fejér, “Untersuchungen über Fouriersche Reihen,” Math. Ann. 58, 51–69 (1904).CrossRefzbMATHGoogle Scholar
  2. 2.
    H. Lebesgue, “Recherches sur la sommabilitéforte des series de Fourier,” Math. Ann. 61, 251–280 (1905).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    G. H. Hardy and J. E. Littlewood, “Sur la séries de Fourier d’une fonction à carre sommable,” Comptes Rendus (Paris) 156, 1307–1309 (1913).zbMATHGoogle Scholar
  4. 4.
    J. Marcinkiewicz, “Sur unemethode remarquable de sommation des séries doublées de Fourier,” Ann. Scuola Norm. Sup. Pisa 8, 149–160 (1939).MathSciNetzbMATHGoogle Scholar
  5. 5.
    A. Zygmund, Trigonometric Series (Cambridge Univ. Press, Cambridge, 1959).zbMATHGoogle Scholar
  6. 6.
    K. I. Oskolkov, “On strong summability of Fourier series,” in Trudy Mat. Inst. Steklov Vol. 172: Studies in the Theory of Functions of Several Real Variables and Approximation of Functions, Collection of papers (Nauka, Moscow, 1985), pp. 280–290 [in Russian] [Proc. Steklov Inst.Math. 172, 303–314 (1987)].Google Scholar
  7. 7.
    V. A. Rodin, “The space BMO and strong means of Fourier series,” Anal.Math. 16 (4), 291–302 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    G. A. Karagulyan, “On the divergence of strong F-means of Fourier series,” J. Contemp.Math. Anal. 26 (2), 66–69 (1991).MathSciNetGoogle Scholar
  9. 9.
    G. A. Karagulyan, “Everywhere divergent F-means of Fourier series,” Mat. Zametki 80 (1), 50–59 (2006) [Math. Notes 80 (1), 47–56 (2006)].MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    B. Jessen, J. Marcinkiewicz, and A. Zygmund, “Note on the differentiability of multiple integrals,” Fund. Math. 25, 217–234 (1935).CrossRefzbMATHGoogle Scholar
  11. 11.
    L. D. Gogoladze, “On strong summability almost everywhere,” Mat. Sb. 135 (177) (2), 158–168 (1988) [Math. USSR-Sb. 63 (1), 153–164 (1989)].zbMATHGoogle Scholar
  12. 12.
    F. Schipp, “Über die starke Summation von Walsh–Fourier Reihen,” Acta Sci. Math. (Szeged) 30, 77–87 (1969).MathSciNetzbMATHGoogle Scholar
  13. 13.
    F. Schipp, “On strong approximation ofWalsh–Fourier series,” Magyar Tud. Akad.Mat. Fiz.Oszt. Közl. 19, 101–111 (1969).Google Scholar
  14. 14.
    F. Schipp and N. X. Ky, “On strong summability of polynomial expansions,” Anal. Math. 12 (2), 115–127 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    L. Leindler, “On the strong approximation of Fourier series,” Acta Sci.Math. (Szeged) 38, 317–324 (1976).MathSciNetzbMATHGoogle Scholar
  16. 16.
    L. Leindler, “Strong approximation and classes of functions,” Mitt.Math. Sem. Giessen 132, 29–38 (1978).MathSciNetzbMATHGoogle Scholar
  17. 17.
    L. Leindler, Strong Approximation by Fourier Series (Akademiai Kiado, Budapest, 1985).zbMATHGoogle Scholar
  18. 18.
    L. Leindler, “Über die Approximation im starken Sinne,” Acta Math. Acad. Sci. Hungar. 16, 255–262 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    V. Totik, “On the strong approximation of Fourier series,” ActaMath. Acad. Sci.Hungar. 35 (1-2), 151–172 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    V. Totik, “On the strong approximation of Fourier series,” ActaMath. Acad. Sci.Hungar. 35 (1-2), 151–172 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    V. Totik, “On the generalization of Fejér’s summation theorem,” in Functions, Series, Operators, Colloq. Math. Soc. János Bolyai (North Holland, Amsterdam–Oxford–New York, 1983), Vol. 35, pp. 1195–1199.zbMATHGoogle Scholar
  22. 22.
    V. Totik, “Notes on Fourier series: strong approximation,” J. Approx. Theory 43, 105–111 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    U. Goginava and L. Gogoladze, “Strong approximation by Marcinkiewicz means of double Walsh–Fourier series,” Constr. Approx. 35 (1), 1–19 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    U. Goginava and L. Gogoladze, “Strong approximation of doubleWalsh–Fourier series,” Studia Sci. Math. Hungar. 49 (2), 170–188 (2012).MathSciNetzbMATHGoogle Scholar
  25. 25.
    U. Goginava, L. Gogoladze, and G. Karagulyan, “BMO-estimation and almost everywhere exponential summability of quadratic partial sums of double Fourier series,” Constr. Approx. 40 (1), 105–120 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    G. Gát, U. Goginava, and G. Karagulyan, “Almost everywhere strong summability of Marcinkiewicz means of doubleWalsh–Fourier series,” Anal.Math. 40 (4), 243–266 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    G. Gát, U. Goginava, and G. Karagulyan, “On everywhere divergence of the strong F-means of Walsh–Fourier series,” J. Math. Anal. Appl. 421 (1), 206–214 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    F. Weisz, “Strong summability of more-dimensional Ciesielski–Fourier series,” East J. Approx. 10 (3), 333–354 (2004).MathSciNetzbMATHGoogle Scholar
  29. 29.
    F. Weisz, “Lebesgue points of double Fourier series and strong summability,” J. Math. Anal. Appl. 432 (1), 441–462 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    F. Weisz, “Lebesgue points of two-dimensional Fourier transforms and strong summability,” J. Fourier Anal. Appl. 21 (4), 885–914 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    F. Weisz, “Strong summability of Fourier transforms at Lebesgue points and Wiener amalgam spaces,” J. Funct. Spaces, No. 420750 (2015).Google Scholar
  32. 32.
    O. D. Gabisoniya, “Points of strong summability of Fourier series,” Mat. Zametki 14 (5), 615–626 (1973) [Math. Notes 14 (5), 913–918 (1973)].MathSciNetGoogle Scholar
  33. 33.
    F. Schipp, “On the strong summability of Walsh series,” Publ.Math. Debrecen 52 (3-4), 611–633 (1998).MathSciNetzbMATHGoogle Scholar
  34. 34.
    M. A. Krasnosel’skii and Ya. B. Rutitskii, Convex Functions and Orlicz Spaces (Fizmatgiz, Moscow, 1958) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Iv. Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  2. 2.Yerevan State UniversityYerevanArmenia

Personalised recommendations