Izvestiya, Atmospheric and Oceanic Physics

, Volume 55, Issue 4, pp 374–379 | Cite as

Influence of Nonlinear Interaction on the Evolution of Waves in a Shallow Basin

  • A. A. Rodin
  • N. A. RodinaEmail author
  • A. A. KurkinEmail author
  • E. N. PelinovskyEmail author


The influence of nonlinear interaction of oppositely directed nonlinear waves in a shallow basin is studied theoretically and numerically within the nonlinear theory of shallow water. It is shown that this interaction leads to a change in the phase of propagation of the main wave, which is forced to propagate along the flow induced by the oncoming wave. The estimates of the undisturbed wave height at the time of interaction agree with the theoretical predictions. The phase shift during the interaction of undisturbed waves is sufficiently small, but becomes noticeable in the case of the propagation of breaking waves.


long waves numerical experiment shallow water equations wave interaction finite volume method 



This research was performed within the Scientific State Task (theme nos. 5.4568.2017/6.7 and 5.5176.2017/8.9) and supported by grant from the President of the Russian Federation for Leading Scientific Schools of Russia SS-2685.2018.5, the “Nonlinear Dynamics” Program, and the Russian Foundation for Basic Research (grant nos. 17-05-00067 and 18-05-80019).


  1. 1.
    G. Stoker, Water Waves (Wiley-Interscience, New York, 1957; Moscow, Izdatel’stvo inostrannoi literatury, 1959).Google Scholar
  2. 2.
    N. E. Vol’tsinger, K. A. Klevannyi, and E. N. Pelinovsky, Longwave Dynamics of Coastal Zones (Gidrometeoizdat, Leningrad, 1989) [in Russian].Google Scholar
  3. 3.
    A. S. Arsen’ev and N. K. Shelkovnikov, Dynamics of Seawater Long Waves (MGU, Moscow, 1991) [in Russian].Google Scholar
  4. 4.
    C. O. Sozdinler, A. C. Yalciner, and A. Zaytsev, “Investigation of tsunami hydrodynamic parameters in inundation zones with different structural layouts,” Pure Appl. Geophys. 172, 931–952 (2015).CrossRefGoogle Scholar
  5. 5.
    D. Velioglu, R. Kian, A. C. Yalciner, and A. Zaytsev, “Performance assessment of NAMI DANCE in tsunami evolution and currents using a benchmark problem,” J. Mar. Sci. Eng. 4 (3), 49 (2016).CrossRefGoogle Scholar
  6. 6.
    P. J. Lynett, K. Gately, R. Wilson, L. Montoya, D. Arcas, B. Aytore, Y. Bai, J. D. Bricker, M. J. Castro, K. F. Cheung, C. G. David, G. G. Doğan, C. Escalante, J. M. González-Vida, S. T. Grilli, T. W. Heitmann, J. J. Horrillo, U. Kânoglu, R. Kian, J. T. Kirby, W. Li, J. Macías, D. J. Nicolsky, S. Ortega, A. Pampell-Manis, Y. S. Park, V. Roeber, N. Sharghivand, M. Shelby, F. Shi, B. Tehranirad, E. Tolkova, H. K. Thio, D. Velioğlu, A. C. Yalçiner, Y. Yamazaki, A. Zaytsev, and Y. J. Zhang, “Inter-model analysis of tsunami-induced coastal currents,” Ocean Modell. 114, 14–32 (2017).CrossRefGoogle Scholar
  7. 7.
    R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge, 2002).CrossRefGoogle Scholar
  8. 8.
    R. J. LeVeque, D. L. George, and M. J. Berger, “Tsunami modeling with adaptively refined finite volume methods,” Acta Numerica 20, 211–289 (2011).CrossRefGoogle Scholar
  9. 9.
    M. Berger, D. George, R. J. LeVeque, and K. T. Mandli, “The GeoClaw software for depth-averaged flows with adaptive refinement,” Adv. Water Resour. 34 (9), 1195–1206 (2011).CrossRefGoogle Scholar
  10. 10.
    F. I. Gonzalez, R. J. LeVeque, P. Chamberlain, Br. Hirai, J. Varkovitzky, and D. L. George, Validation of the GeoClaw Model (University of Washington, Washington, D.C., 2011).Google Scholar
  11. 11.
    E. N. Pelinovsky, Hydrodynamics of Tsunami Waves (IPF RAN, Nizhny Novgorod, 1996) [in Russian].Google Scholar
  12. 12.
    E. N. Pelinovsky, I. I. Didenkulova, A. A. Kurkin, and A. A. Rodin, Analytical Theory of Sea Wave Run-Up on the Shore (NGTU im. R. E. Alekseeva, Nizhny Novgorod, 2015) [in Russian].Google Scholar
  13. 13.
    A. Raz, D. Nicolsky, A. Rybkin, and E. Pelinovsky, “Long wave run-up in asymmetric bays and in fjords with two separate heads,” J. Geophys. Res.: Oceans 123 (3), 2066–2080 (2018).CrossRefGoogle Scholar
  14. 14.
    E. N. Pelinovsky and A. A. Rodin, “Transformation of a strongly nonlinear wave in a shallow-water basin,” Izv., Atmos. Ocean. Phys. 48 (3), 343–349 (2012).CrossRefGoogle Scholar
  15. 15.
    E. Pelinovsky, C. Kharif, and T. Talipova, “Large-amplitude long wave interaction with a vertical wall,” Eur. J. Mech., Ser. B, 27 (4), 409– 418 (2008).Google Scholar
  16. 16.
    E. Pelinovsky, E. G. Shurgalina, and A. A. Rodin, “Criteria for the transition from a breaking bore to an undular bore,” Izv., Atmos. Ocean. Phys. 51 (5), 530–533 (2015).CrossRefGoogle Scholar
  17. 17.
    I. I. Didenkulova, N. Zaibo, A. A. Kurkin, and E. N. Pelinovsky, “Steepness and spectrum of a nonlinearly deformed wave on shallow waters,” Izv., Atmos. Ocean. Phys. 42 (6), 773–776 (2006).CrossRefGoogle Scholar
  18. 18.
    R. Courant and K. Friedrichs, Supersonic Flow and Shock Waves (Wiley, London, 1948; Izdatel’stvo inostrannoi literatury, Moscow, 1950).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Alexeev Technical UniversityNizhny NovgorodRussia
  2. 2.Lobachevskii National Research State UniversityNizhny NovgorodRussia
  3. 3.Institute of Applied Physics, Russian Academy of SciencesNizhny NovgorodRussia
  4. 4.Special Design Bureau of Marine Research Automation Far East Branch, Russian Academy of SciencesYuzhno-SakhalinskRussia
  5. 5.National Research University Higher School of EconomicsNizhny NovgorodRussia
  6. 6.University of Southern QueenslandDarling HeightsAustralia

Personalised recommendations