Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 55, Issue 4, pp 303–311 | Cite as

Vertical Propagation of Acoustic-Gravity Waves from Atmospheric Fronts into the Upper Atmosphere

  • Y. A. KurdyaevaEmail author
  • S. N. Kulichkov
  • S. P. Kshevetskii
  • O. P. Borchevkina
  • E. V. Golikova
Article
  • 1 Downloads

Abstract

The empirical approximations of atmospheric pressure-field oscillations were constructed based on observational data on atmospheric pressure variations at the land surface, which were obtained at the network of four microbarographs located in the Moscow region during the passage of an atmospheric front. The approximating functions were used as a lower boundary condition to numerically calculate the propagation of acoustic-gravity waves into the upper atmosphere from their source in the lower troposphere. The amplitude of upper atmosphere temperature disturbances caused by acoustic-gravity waves from the atmospheric front was estimated at about 170 K, while the amplitude of upper atmosphere temperature disturbances caused by background pressure variations at the land surface was estimated at 4–5 K.

Keywords:

atmosphere numerical simulation acoustic-gravity waves upper atmosphere 

Notes

ACKNOWLEDGMENTS

This work was done using equipment of the Moscow State University Center for Shared Research Facilities of Super High-Performance Computational Resources.

FUNDING

This work was partially supported by the Russian Foundation for Basic Research (project nos. 17-05-00574, Sections 1–3, 6; 18-05-00184 (Section 5); and 18-05-00576 (Sections 2, 4)).

REFERENCES

  1. 1.
    E. Blanc, T. Farges, A. Le Pichon, and P. Heinrich, “Ten year observations of gravity waves from thunderstorms in Western Africa,” J. Geophys. Res.: Atmos. 119, 6409–6418 (2014).Google Scholar
  2. 2.
    A. D. Pierce and S. C. Coroniti, “A mechanism for the generation of acoustic-gravity waves during thunder-storm formation,” Nature 210, 1209–1210 (1966).CrossRefGoogle Scholar
  3. 3.
    D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41 (1), 1003 (2003).CrossRefGoogle Scholar
  4. 4.
    D. C. Fritts, S. L. Vadas, K. Wan, et al., “Mean and variable forcing of the middle atmosphere by gravity waves,” J. Atmos. Sol.-Terr. Phys. 68, 247–265 (2006).CrossRefGoogle Scholar
  5. 5.
    R. Plougonven and Ch. Snyder, “Inertial gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles,” J. Atmos. Sci. 64, 2502–2520 (2007).CrossRefGoogle Scholar
  6. 6.
    R. Plougonven and F. Zhang, “Internal gravity waves from atmospheric jets and fronts,” Rev. Geophys. 52, 33–76 (2014).CrossRefGoogle Scholar
  7. 7.
    A. S. Medvedev and N. M. Gavrilov, “The nonlinear mechanism of gravity wave generation by meteorological motions in the atmosphere,” J. Atmos. Terr. Phys. 57, 1221–1231 (1995).CrossRefGoogle Scholar
  8. 8.
    N. K. Balachandran, “Gravity waves from thunderstorms,” Mon. Weather Rev. 108, 804–816 (1980).CrossRefGoogle Scholar
  9. 9.
    M. Alexander, P. May, and J. Beres, “Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment,” J. Geophys. Res. 109, 1–11 (2004).CrossRefGoogle Scholar
  10. 10.
    D. V. Miller, “Thunderstorm induced gravity waves as a potential hazard to commercial aircraft,” in Proceedings of the 79th Annual Conference of the American Meteorological Society (Am. Meteorol. Soc., Dallas, Tex., 1999).Google Scholar
  11. 11.
    R. Fovell, D. Durran, and J. R. Holton, “Numerical simulation of convectively generated stratospheric gravity waves,” J. Atmos. Sci. 49 (16), 1427–1442 (1992).CrossRefGoogle Scholar
  12. 12.
    Y. A. Kurdyaeva, S. P. Kshevetskii, N. M. Gavrilov, et al., “Correct boundary conditions for the high-resolution model of nonlinear acoustic–gravity waves forced by atmospheric pressure variations,” Pure Appl. Geophys. 175, 3639–3652 (2018).  https://doi.org/10.1007/s00024-018-1906-x CrossRefGoogle Scholar
  13. 13.
    S. P. Kshevetskii, “Numerical simulation of nonlinear internal gravity waves,” Comput. Math. Math. Phys. 41, 1777–1791 (2001).Google Scholar
  14. 14.
    S. P. Kshevetskii, “Modeling of propagation of internal gravity waves in gases,” Comput. Math. Math. Phys. 41 (2), 273–288 (2001).Google Scholar
  15. 15.
    S. P. Kshevetskii, “Internal gravity waves in nonexponentially density-stratified fluids,” Comput. Math. Math. Phys. 42 (10), 1510–1521 (2002).Google Scholar
  16. 16.
    S. P. Kshevetskii, “Analytical and numerical investigation of nonlinear internal gravity waves,” Nonlinear Processes Geophys. 8, 37–53 (2001).CrossRefGoogle Scholar
  17. 17.
    J. B. Snively and V. B. Pasko, “Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes,” Geophys. Res. Lett. 30 (24), 2254 (2003).  https://doi.org/10.1029/2003GL018436 CrossRefGoogle Scholar
  18. 18.
    S. P. Kshevetskii and S. N. Kulichkov, “Effects that internal gravity waves from convective clouds have on atmospheric pressure and spatial temperature–disturbance distribution,” Izv., Atmos. Ocean. Phys. 51 (1), 42–48 (2015).CrossRefGoogle Scholar
  19. 19.
    S. N. Kulichkov, N. D. Tsybulskaya, I. P. Chunchuzov, et al., “Studying internal gravity waves generated by atmospheric fronts over the Moscow region” Izv., Atmos. Ocean. Phys. 53 (4), 402–412 (2017).CrossRefGoogle Scholar
  20. 20.
    Goddard Earth Sciences Data and Information Services Center (GES DISC). https://disc.gsfc.nasa.gov. Accessed August 1, 2018.Google Scholar
  21. 21.
    Kh. P. Pogosyan, Cyclones (Gidrometeoizdat, Leningrad, 1976) [in Russian].Google Scholar
  22. 22.
    AtmoSym model of atmospheric processes. http://atmos.kantiana.ru. Accessed October 20, 2018.Google Scholar
  23. 23.
    S. P. Kshevetskii and N. M. Gavrilov, “Vertical propagation, breaking, and effects of nonlinear gravity waves in the atmosphere,” J. Atmos. Sol.-Terr. Phys. 67, 1014–1030 (2005).CrossRefGoogle Scholar
  24. 24.
    Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, and Vad. V. Voevodin, “The practice of the Lomonosov supercomputer,” Otkrytye Sist., No. 7, 36–39 (2012).Google Scholar
  25. 25.
    J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, “NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues,” J. Geophys. Res. 107 (A12), 1468 (2002).  https://doi.org/10.1029/2002JA009430 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Y. A. Kurdyaeva
    • 1
    • 2
    Email author
  • S. N. Kulichkov
    • 3
    • 4
  • S. P. Kshevetskii
    • 1
  • O. P. Borchevkina
    • 1
    • 2
  • E. V. Golikova
    • 3
  1. 1.Immanuel Kant Baltic Federal UniversityKaliningradRussia
  2. 2.Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Kaliningrad Branch, Russian Academy of SciencesKaliningradRussia
  3. 3.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia
  4. 4.Moscow State UniversityMoscowRussia

Personalised recommendations