Izvestiya, Atmospheric and Oceanic Physics

, Volume 55, Issue 4, pp 334–340 | Cite as

The 100 000-Year Periodicity in Glacial Cycles and Oscillations of World Ocean Level

  • V. A. BezverkhniiEmail author


The 100 000-year periodicity of climate changes during the Late Pleistocene (in the last 800 ka) may be related to the respective oscillations in both insolation and submarine volcanic activity, with the latter being affected by gravity forces in the solar system. This is concluded on the basis of wavelet analysis of long-term data series on oscillations of the Earth’s orbital eccentricity, variations in various paleoclimatic characteristics, their known spectral estimates, and data on submarine volcanic activity.


Pleistocene climate Earth’s orbital eccentricity Earth’s obliquity volcanic activity benthos spectral density wavelet analysis 



I am grateful to G.S. Golitsyn and O.G. Chkhetiani for their attention to this work.


This work was supported by the Russian Foundation for Basic Research (project no. 17-05-01097).


  1. 1.
    W. H. Berger, Milankovitch Theory—Hits and Misses (University of California, San Diego, 2012), Scripps Institution of Oceanography Technical Report.Google Scholar
  2. 2.
    M. Maslin, “Forty years of linking orbits to ice ages,” Nature 540, 208–210 (2016).CrossRefGoogle Scholar
  3. 3.
    I. I. Mokhov, V. A. Bezverkhny, and A. A. Karpenko, “Diagnosis of relative variations in atmospheric greenhouse gas contents and temperature from Vostok Antarctic ice-core paleoreconstructions,” Izv., Atmos. Ocean. Phys. 41 (5), 523–536 (2005).Google Scholar
  4. 4.
    I. I. Mokhov, V. A. Bezverkhnii, and A. A. Karpenko, “Mutual changes in the temperature regime and content of greenhouse gases in the atmosphere from paleoreconstructions for the last 800 ka,” in Extreme Natural Phenomena and Catastrophes, Vol. 1: Assessment and Ways to Mitigating the Adverse Effects of Extreme Natural Phenomena, Ed. by A. O. Gliko (IFZ RAN, Moscow, 2010), pp. 312–319 [in Russian].Google Scholar
  5. 5.
    A. Berger and M. F. Loutre, “Insolation values for the climate of the last 10 million years,” Quat. Sci. Rev. 10, 297–317 (1991).CrossRefGoogle Scholar
  6. 6.
    W. F. Ruddiman, “Orbital changes and climate,” Quat. Sci. Rev. 25, 3092–3112 (2006).CrossRefGoogle Scholar
  7. 7.
    N. J. Shackleton, “The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity,” Science 289, 1897–1902 (2000). CrossRefGoogle Scholar
  8. 8.
    A. Ganopolski and R. Calov, “The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles,” Clim. Past 7, 1415–1425 (2011).CrossRefGoogle Scholar
  9. 9.
    A. Berger, J. L. Melice, and M. F. Loutre, “On the origin of the 100-kyr cycles in the astronomical forcing,” Paleoceanography 20, 1–17 (2005). CrossRefGoogle Scholar
  10. 10.
    M. A. Maslin and C. M. Brierley, “The role of orbital forcing in the early Middle Pleistocene transition,” Quat. Int. 389, 47–55 (2015).CrossRefGoogle Scholar
  11. 11.
    E. Tziperman, M. E. Raymo, P. J. Huybers, and C. Wunsch, “Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing,” Paleoceanography 21, 1–11 (2006).CrossRefGoogle Scholar
  12. 12.
    M. Siddall, B. Honisch, C. Waelbroeck, and P. Huybers, “Changes in deep Pacific Temperature during the mid-Pleistocene transition and Quaternary,” Quat. Sci. Rev. 29, 170–181 (2010).CrossRefGoogle Scholar
  13. 13.
    L. E. Lisiecki, “Links between eccentricity forcing and the 100,000-year glacial cycle,” Nature Geosci. 3, 349–352 (2010).CrossRefGoogle Scholar
  14. 14.
    L. E. Lisiecki and M. E. Raymo, “A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records,” Paleoceanography 20, 1–17 (2005).Google Scholar
  15. 15.
    B. De Boer, L. J. Lourens, and R. S. W. van de Wal, “Persistent 400,000-year variability of Antarctic ice volume and the carbon-cycle is revealed throughout the Plio-Pleistocene,” Nat. Commun. 5, 2999 (2014).CrossRefGoogle Scholar
  16. 16.
    J. Morlet, G. Arensz, E. Fourgeau, and D. Giard, “Wave propagation and sampling theory. Part II: Sampling theory and complex waves,” Geophysics 41 (2), 222–236 (1982).CrossRefGoogle Scholar
  17. 17.
    E. B. Postnikov, “Wavelet transform with the Morlet wavelet : Calculation methods based on a solution of diffusion equations,” Komp’yuternye Issled. Model. 1 (1), 5–12 (2009).Google Scholar
  18. 18.
    V. Cappellini, A. G. D. Constantinides, and P. Emiliani, Digital Filters and Their Applications (Academic Press, London, 1978).Google Scholar
  19. 19.
    V. A. Bezverkhnii, “Manifestation of characteristic periods of oscillations of the Earth’s orbital parameters in the paleoclimatic data,” Dokl. Earth Sci. 451 (1), 779–783 (2013).CrossRefGoogle Scholar
  20. 20.
    P. Huybers and Ch. H. Langmuir, “Delayed CO2 emissions from mid-ocean ridge volcanism as a possible cause of late-Pleistocene glacial cycles,” Mar. Geol. 457, 238–249 (2017).Google Scholar
  21. 21.
    A. Ganopolski and V. Brovkin, “Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity,” Clim. Past 13, 1695–1716 (2017).CrossRefGoogle Scholar
  22. 22.
    Z. J. Wang and X. Lin, “Astronomy and climate–Earth system: Can magma motion under Sun–Moon gravitation contribute to paleoclimatic variations and Earth’s heat?,” Adv. Astron. 2015, 536829 (2015).CrossRefGoogle Scholar
  23. 23.
    S. Kutterolf, M. Jegen, J. X. Mitrovica, T. Kwasnitschka, A. Freundt, and P. J. Huybers, “A detection of Milankovitch frequencies in global volcanic activity,” Geology 41 (2), 227–230 (2013).CrossRefGoogle Scholar
  24. 24.
    V. A. Bezverkhnii, “Earth’s obliquity oscillations can influence climate change by driving global volcanic activity,” Geosci. Res. 2 (1), 22–26 (2017).Google Scholar
  25. 25.
    M. Tolstoy, “Mid-ocean ridge eruptions as a climate valve,” Geophys. Res. Lett. 42 (5), 1346–1351 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations